- Browse by Author
Browsing by Author "Kinesiology, School of Physical Education and Tourism Management"
Now showing 1 - 10 of 21
Results Per Page
Sort Options
Item Active Gaming as a Form of Exercise to Induce Hypoalgesia(Liebert, 2017-08) Carey, Christopher; Naugle, Keith E.; Aqeel, Dania; Ohlman, Thomas; Naugle, Kelly M.; Kinesiology, School of Physical Education and Tourism ManagementObjective: An acute bout of moderate-to-vigorous exercise temporarily reduces pain sensitivity in healthy adults. Recently, active gaming has been rising in popularity as a means of light-to-moderate exercise and may be particularly suitable for deconditioned individuals. Whether the physical activity elicited in active games can produce a hypoalgesic effect remains unknown. The purpose of this study was to determine whether active videogames can reduce pressure and heat pain sensitivity in healthy adults. We also evaluated the relationship between the physical activity elicited by the games and the magnitude of the hypoalgesic response. Materials and Methods: Twenty-one healthy adults played four different active games on separate days, including Microsoft® Kinect Xbox® One's Fighter Within and Sports Rival's Tennis, and Nintendo® Wii™ Sports' Boxing and Tennis. Heat pain thresholds on the forearm and pressure pain thresholds (PPTs) on the trapezius and forearm were assessed immediately before and after a 15-minute active gaming or control session. Minutes spent in sedentary time and moderate-to-vigorous physical activity (MVPA) during active gaming were measured with an accelerometer. Results: The analyses revealed that PPTs at the forearm and trapezius significantly increased from pretest to posttest following Kinect Fighter Within. PPTs at the trapezius also significantly increased from pretest to posttest following Wii Boxing. The magnitude of the hypoalgesic response was significantly correlated with MVPA and sedentary time during gameplay. Conclusion: These results suggest that an active gaming session played at a moderate intensity is capable of temporarily reducing pain sensitivity.Item Advocating for Your Department through a School Merger: The Chair Perspective(Wiley, 2019) Urtel, Mark; Cecil, Amanda K.; Kinesiology, School of Physical Education and Tourism ManagementItem Bariatric Surgery–Induced Cardiac and Lipidomic Changes in Obesity‐Related Heart Failure with Preserved Ejection Fraction(Wiley, 2018) Mikhalkova, Deana; Holman, Sujata R.; Jiang, Hui; Sagir, Mohammed; Novak, Eric; Coggan, Andrew R.; O'Connor, Robert; Bashir, Adil; Jamal, Ali; Ory, Daniel S.; Schaffer, Jean E.; Eagon, J. Christopher; Peterson, Linda R.; Kinesiology, School of Physical Education and Tourism ManagementObjective To determine the effects of gastric bypass on myocardial lipid deposition and function and the plasma lipidome in women with obesity and heart failure with preserved ejection fraction (HFpEF). Methods A primary cohort (N = 12) with HFpEF and obesity underwent echocardiography and magnetic resonance spectroscopy both before and 3 months and 6 months after bariatric surgery. Plasma lipidomic analysis was performed before surgery and 3 months after surgery in the primary cohort and were confirmed in a validation cohort (N = 22). Results After surgery‐induced weight loss, Minnesota Living with Heart Failure questionnaire scores, cardiac mass, and liver fat decreased (P < 0.02, P < 0.001, and P = 0.007, respectively); echo‐derived e′ increased (P = 0.03), but cardiac fat was unchanged. Although weight loss was associated with decreases in many plasma ceramide and sphingolipid species, plasma lipid and cardiac function changes did not correlate. Conclusions Surgery‐induced weight loss in women with HFpEF and obesity was associated with improved symptoms, reverse cardiac remodeling, and improved relaxation. Although weight loss was associated with plasma sphingolipidome changes, cardiac function improvement was not associated with lipidomic or myocardial triglyceride changes. The results of this study suggest that gastric bypass ameliorates obesity‐related HFpEF and that cardiac fat deposition and lipidomic changes may not be critical to its pathogenesis.Item Blood Flow Restriction Training: Implementation into Clinical Practice(Berkeley Electronic Press, 2017-09-01) Vanwye, William R.; Weatherholt, Alyssa M.; Mikesky, Alan E.; Kinesiology, School of Physical Education and Tourism ManagementTo improve muscular strength and hypertrophy the American College of Sports Medicine recommends moderate to high load resistance training. However, use of moderate to high loads are often not feasible in clinical populations. Therefore, the emergence of low load (LL) blood flow restriction (BFR) training as a rehabilitation tool for clinical populations is becoming popular. Although the majority of research on LL-BFR training has examined healthy populations, clinical applications are emerging. Overall, it appears BFR training is a safe and effective tool for rehabilitation. However, additional research is needed prior to widespread application.Item Comparison of Psychological Response between Concussion and Musculoskeletal Injury in Collegiate Athletes(American Psychological Association, 2017) Turner, Samantha; Langdon, Jody; Shaver, George; Graham, Victoria; Naugle, Kelly; Buckley, Thomas; Kinesiology, School of Physical Education and Tourism ManagementThe psychological response to musculoskeletal injuries has been well documented, however, research on the psychological response to concussion is limited. The Profile of Mood States (POMS) and the State-Trait Anxiety Inventory (STAI) have recently been used to assess the psychological recovery of concussions. Although some studies indicate that psychological response is different for musculoskeletal injuries and concussion, there is currently not enough information to indicate this difference occurs at specific clinical milestones. The purpose of this study was to compare the psychological responses of student-athletes who have been diagnosed with a concussion to those of athletes diagnosed with musculoskeletal injuries with similar recovery duration. Fifteen collegiate athletes who sustained a musculoskeletal injury were recruited and matched with 15 previously collected concussion participants. The main outcome measures were the scores of POMS constructs: tension-anxiety, anger-hostility, fatigue-inertia, depression-dejection, vigor-activity, confusion-bewilderment, and total mood disturbance and STAI (state anxiety only). Two-way MANOVAs was run to determine the effects of group and time on POMS and STAI constructs. There were no significant interactions identified, but follow-up ANOVAs identified a main effect for time for most POMS subscales, with POMS scores improving over time in both groups. Analyses also revealed that tension-anxiety, vigor-activity and the STAI were not affected by time or group. The findings of this study, that both groups' psychological response to injury improves over time and at similar clinical milestones suggests reduction in sports and team related activities may play a substantial role in the psychological response to either concussion or musculoskeletal injury.Item The Decline of Endogenous Pain Modulation With Aging: A Meta-Analysis of Temporal Summation and Conditioned Pain Modulation(Elsevier, 2019) Hackett, Jason; Naugle, Keith E.; Naugle, Kelly M.; Kinesiology, School of Physical Education and Tourism ManagementThe purpose of this article was to examine age-related changes in conditioned pain modulation (CPM) and temporal summation (TS) of pain using meta-analytic techniques. Five electronic databases were searched for studies, which compared measures of CPM and TS among healthy, chronic pain-free younger, middle-aged, and older adults. Eleven studies were included in the final review for TS and 11 studies were included in the review of CPM. The results suggested a moderate magnitude of difference in TS among younger and middle-aged/older adults, with the older cohorts exhibiting enhanced TS of pain. Considerable variability existed in the magnitude of the effect sizes, which was likely due to the different experimental methodologies used across studies (ie, interstimulus interval, stimulus type, and body location). In regards to CPM, the data revealed a large magnitude of difference between younger and older adults, with younger adults exhibiting more efficient pain inhibition. Differences in CPM between middle-aged and older adults were minimal. The magnitude of pain inhibition during CPM in older adults may depend on the use of concurrent versus nonconcurrent protocols. In summary, the data provided strong quantitative evidence of a general age-related decline in endogenous pain modulatory function as measured by TS and CPM.Item Dietary Nitrate Increases VO2peak and Performance but Does Not Alter Ventilation or Efficiency in Patients With Heart Failure With Reduced Ejection Fraction(Elsevier, 2017) Coggan, Andrew R.; Broadstreet, Seth R.; Mahmood, Kiran; Mikhalkova, Deana; Madigan, Michael; Bole, Indra; Park, Soo; Leibowitz, Joshua L.; Kadkhodayan, Ana; Thomas, Deepak P.; Thies, Dakkota; Peterson, Linda R.; Kinesiology, School of Physical Education and Tourism ManagementBackground Patients with heart failure with reduced ejection fraction (HFrEF) exhibit lower efficiency, dyspnea, and diminished peak oxygen uptake (VO2peak) during exercise. Dietary nitrate (NO3−), a source of nitric oxide (NO), has improved these measures in some studies of other populations. We determined the effects of acute NO3− ingestion on exercise responses in 8 patients with HFrEF using a randomized, double-blind, placebo-controlled, crossover design. Methods and Results Plasma NO3−, nitrite (NO2−), and breath NO were measured at multiple time points and respiratory gas exchange was determined during exercise after ingestion of beetroot juice containing or devoid of 11.2 mmol of NO3−. NO3− intake increased (P < .05–0.001) plasma NO3− and NO2− and breath NO by 1469 ± 245%, 105 ± 34%, and 60 ± 18%, respectively. Efficiency and ventilation during exercise were unchanged. However, NO3− ingestion increased (P < .05) VO2peak by 8 ± 2% (ie, from 21.4 ± 2.1 to 23.0 ± 2.3 mL.min−1.kg−1). Time to fatigue improved (P < .05) by 7 ± 3 % (ie, from 582 ± 84 to 612 ± 81 seconds). Conclusions Acute dietary NO3− intake increases VO2peak and performance in patients with HFrEF. These data, in conjunction with our recent data demonstrating that dietary NO3− also improves muscle contractile function, suggest that dietary NO3− supplementation may be a valuable means of enhancing exercise capacity in this population.Item Dietary nitrate's effects on exercise performance in heart failure with reduced ejection fraction (HFrEF)(Elsevier, 2018) Mulkareddy, Vinaya; Racette, Susan B.; Coggan, Andrew R.; Peterson, Linda R.; Kinesiology, School of Physical Education and Tourism ManagementHeart failure with reduced ejection fraction (HFrEF) is a deadly and disabling disease. A key derangement contributing to impaired exercise performance in HFrEF is decreased nitric oxide (NO) bioavailability. Scientists recently discovered the inorganic nitrate pathway for increasing NO. This has advantages over organic nitrates and NO synthase production of NO. Small studies using beetroot juice as a source of inorganic nitrate demonstrate its power to improve exercise performance in HFrEF. A larger-scale trial is now underway to determine if inorganic nitrate may be a new arrow for physicians' quiver of HFrEF treatments.Item Dietary nitrate-induced increases in human muscle power: high versus low responders(Wiley, 2018-01) Coggan, Andrew R.; Broadstreet, Seth R.; Mikhalkova, Deana; Bole, Indra; Leibowitz, Joshua L.; Kadkhodayan, Ana; Park, Soo; Thomas, Deepak P.; Thies, Dakkota; Peterson, Linda R.; Kinesiology, School of Physical Education and Tourism ManagementMaximal neuromuscular power is an important determinant of athletic performance and also quality of life, independence, and perhaps even mortality in patient populations. We have shown that dietary nitrate (NO3- ), a source of nitric oxide (NO), improves muscle power in some, but not all, subjects. The present investigation was designed to identify factors contributing to this interindividual variability. Healthy men (n = 13) and women (n = 7) 22-79 year of age and weighing 52.1-114.9 kg were studied using a randomized, double-blind, placebo-controlled, crossover design. Subjects were tested 2 h after ingesting beetroot juice (BRJ) either containing or devoid of 12.3 ± 0.8 mmol of NO3- . Plasma NO3- and nitrite (NO2- ) were measured as indicators of NO bioavailability and maximal knee extensor speed (Vmax ), power (Pmax ), and fatigability were determined via isokinetic dynamometry. On average, dietary NO3- increased (P < 0.05) Pmax by 4.4 ± 8.1%. Individual changes, however, ranged from -9.6 to +26.8%. This interindividual variability was not significantly correlated with age, body mass (inverse of NO3- dose per kg), body mass index (surrogate for body composition) or placebo trial Vmax or fatigue index (in vivo indicators of muscle fiber type distribution). In contrast, the relative increase in Pmax was significantly correlated (r = 0.60; P < 0.01) with the relative increase in plasma NO2- concentration. In multivariable analysis female sex also tended (P = 0.08) to be associated with a greater increase in Pmax. We conclude that the magnitude of the dietary NO3- -induced increase in muscle power is dependent upon the magnitude of the resulting increase in plasma NO2- and possibly female sex.Item DIFFERENTIAL EFFECTS OF VARYING DOSES OF DIETARY NITRATE ON MUSCLE FUNCTION AND BLOOD PRESSURE IN OLDER SUBJECTS(Oxford University Press, 2019-11) Coggan, Andrew R.; Gallardo, Edgar; Gray, Derrick A.; Hoffman, Richard; Moorthi, Ranjani; Kinesiology, School of Physical Education and Tourism ManagementWe have recently demonstrated that dietary nitrate, a source of nitric oxide via the enterosalivary pathway, can improve muscle contractile function in healthy older men and women. Nitrate ingestion has also been shown to reduce blood pressure in older individuals. However, the optimal dose for eliciting these beneficial effects is unknown. We therefore performed a randomized, double-blind, crossover study to determine the effects of ingesting 3.3 mL/kg of beetroot juice (BRJ) containing 0, 212, or 425 µmol/kg of nitrate in six healthy older (age 69±3 y) subjects. Maximal knee extensor speed (Vmax) and power (Pmax) were measured 2 h after BRJ ingestion using isokinetic dynamometry; blood pressure was monitored periodically throughout each study. Mean arterial pressure (in mmHg) was lower (P<0.05) after the high (80±4) vs. the low (84±3) or placebo (88±2) doses. Vmax (in rad/s), however, was higher (P<0.05) after the low dose (11.7±0.8), but not the high dose (10.8±1.0), compared to the placebo (10.5±1.0). Pmax (in W/kg) also tended to be higher (P=0.11) in the low (3.9±0.5) compared to the placebo (3.7±0.5) or high (3.7±0.5) trials. Five out of six subjects achieved a higher Vmax and Pmax after the low vs. the high dose. We conclude that dietary nitrate has differential effects on muscle function and blood pressure in older individuals. A high dose of nitrate intake further lowers blood pressure but does not enhance muscle contractility as much as a lower dose. Supported by Indiana University Purdue University Indianapolis and by the NIA (R21 AG053606).
- «
- 1 (current)
- 2
- 3
- »