- Browse by Author
Browsing by Author "Khatpe, Aditi S."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item A human skeletal muscle stem/myotube model reveals multiple signaling targets of cancer secretome in skeletal muscle(Elsevier, 2023-03-31) Wang, Ruizhong; Kumar, Brijesh; Bhat-Nakshatri, Poornima; Khatpe, Aditi S.; Murphy, Michael P.; Wanczyk, Kristen E.; Simpson, Edward; Chen, Duojiao; Gao, Hongyu; Liu, Yunlong; Doud, Emma H.; Mosley, Amber L.; Nakshatri, Harikrishna; Surgery, School of MedicineSkeletal muscle dysfunction or reprogramming due to the effects of the cancer secretome is observed in multiple malignancies. Although mouse models are routinely used to study skeletal muscle defects in cancer, because of species specificity of certain cytokines/chemokines in the secretome, a human model system is required. Here, we establish simplified multiple skeletal muscle stem cell lines (hMuSCs), which can be differentiated into myotubes. Using single nuclei ATAC-seq (snATAC-seq) and RNA-seq (snRNA-seq), we document chromatin accessibility and transcriptomic changes associated with the transition of hMuSCs to myotubes. Cancer secretome accelerated stem to myotube differentiation, altered the alternative splicing machinery and increased inflammatory, glucocorticoid receptor, and wound healing pathways in hMuSCs. Additionally, cancer secretome reduced metabolic and survival pathway associated miR-486, AKT, and p53 signaling in hMuSCs. hMuSCs underwent myotube differentiation when engrafted into NSG mice and thus providing a humanized in vivo skeletal muscle model system to study cancer cachexia.Item Mutant RAS-driven Secretome Causes Skeletal Muscle Defects in Breast Cancer(American Association for Cancer Research, 2024) Wang, Ruizhong; Khatpe, Aditi S.; Kumar, Brijesh; Mang, Henry Elmer; Batic, Katie; Adebayo, Adedeji K.; Nakshatri, Harikrishna; Surgery, School of MedicineCancer-induced skeletal muscle defects differ in severity between individuals with the same cancer type. Cancer subtype-specific genomic aberrations are suggested to mediate these differences, but experimental validation studies are very limited. We utilized three different breast cancer patient-derived xenograft (PDX) models to correlate cancer subtype with skeletal muscle defects. PDXs were derived from brain metastasis of triple-negative breast cancer (TNBC), estrogen receptor-positive/progesterone receptor-positive (ER+/PR+) primary breast cancer from a BRCA2-mutation carrier, and pleural effusion from an ER+/PR- breast cancer. While impaired skeletal muscle function as measured through rotarod performance and reduced levels of circulating and/or skeletal muscle miR-486 were common across all three PDXs, only TNBC-derived PDX activated phospho-p38 in skeletal muscle. To further extend these results, we generated transformed variants of human primary breast epithelial cells from healthy donors using HRASG12V or PIK3CAH1047R mutant oncogenes. Mutations in RAS oncogene or its modulators are found in approximately 37% of metastatic breast cancers, which is often associated with skeletal muscle defects. Although cells transformed with both oncogenes generated adenocarcinomas in NSG mice, only HRASG12V-derived tumors caused skeletal muscle defects affecting rotarod performance, skeletal muscle contraction force, and miR-486, Pax7, pAKT, and p53 levels in skeletal muscle. Circulating levels of the chemokine CXCL1 were elevated only in animals with tumors containing HRASG12V mutation. Because RAS pathway aberrations are found in 19% of cancers, evaluating skeletal muscle defects in the context of genomic aberrations in cancers, particularly RAS pathway mutations, may accelerate development of therapeutic modalities to overcome cancer-induced systemic effects. Significance: Mutant RAS- and PIK3CA-driven breast cancers distinctly affect the function of skeletal muscle. Therefore, research and therapeutic targeting of cancer-induced systemic effects need to take aberrant cancer genome into consideration.Item Nexus between PI3K/AKT and Estrogen Receptor Signaling in Breast Cancer(MDPI, 2021-01-20) Khatpe, Aditi S.; Adebayo, Adedeji K.; Herodotou, Christopher A.; Kumar, Brijesh; Nakshatri, Harikrishna; Surgery, School of MedicineSignaling from estrogen receptor alpha (ERα) and its ligand estradiol (E2) is critical for growth of ≈70% of breast cancers. Therefore, several drugs that inhibit ERα functions have been in clinical use for decades and new classes of anti-estrogens are continuously being developed. Although a significant number of ERα+ breast cancers respond to anti-estrogen therapy, ≈30% of these breast cancers recur, sometimes even after 20 years of initial diagnosis. Mechanism of resistance to anti-estrogens is one of the intensely studied disciplines in breast cancer. Several mechanisms have been proposed including mutations in ESR1, crosstalk between growth factor and ERα signaling, and interplay between cell cycle machinery and ERα signaling. ESR1 mutations as well as crosstalk with other signaling networks lead to ligand independent activation of ERα thus rendering anti-estrogens ineffective, particularly when treatment involved anti-estrogens that do not degrade ERα. As a result of these studies, several therapies that combine anti-estrogens that degrade ERα with PI3K/AKT/mTOR inhibitors targeting growth factor signaling or CDK4/6 inhibitors targeting cell cycle machinery are used clinically to treat recurrent ERα+ breast cancers. In this review, we discuss the nexus between ERα-PI3K/AKT/mTOR pathways and how understanding of this nexus has helped to develop combination therapies.Item Signaling Pathway Alterations Driven by BRCA1 and BRCA2 Germline Mutations are Sufficient to Initiate Breast Tumorigenesis by the PIK3CAH1047R Oncogene(American Association for Cancer Research, 2024) Bhat-Nakshatri, Poornima; Khatpe, Aditi S.; Chen, Duojiao; Batic, Katie; Mang, Henry; Herodotou, Christopher; McGuire, Patrick C.; Xuei, Xiaoling; Erdogan, Cihat; Gao, Hongyu; Liu, Yunlong; Sandusky, George; Storniolo, Anna Maria; Nakshatri, Harikrishna; Surgery, School of MedicineSingle-cell transcriptomics studies have begun to identify breast epithelial cell and stromal cell specific transcriptome differences between BRCA1/2 mutation carriers and non-carriers. We generated a single-cell transcriptome atlas of breast tissues from BRCA1, BRCA2 mutation carriers and compared this single-cell atlas of mutation carriers with our previously described single-cell breast atlas of healthy non-carriers. We observed that BRCA1 but not BRCA2 mutations altered the ratio between basal (basal-myoepithelial), luminal progenitor (luminal adaptive secretory precursor, LASP), and mature luminal (luminal hormone sensing) cells in breast tissues. A unique subcluster of cells within LASP cells is underrepresented in case of BRCA1 and BRCA2 mutation carriers compared with non-carriers. Both BRCA1 and BRCA2 mutations specifically altered transcriptomes in epithelial cells which are an integral part of NFκB, LARP1, and MYC signaling. Signaling pathway alterations in epithelial cells unique to BRCA1 mutations included STAT3, BRD4, SMARCA4, HIF2A/EPAS1, and Inhibin A signaling. BRCA2 mutations were associated with upregulation of IL6, PDK1, FOXO3, and TNFSF11 signaling. These signaling pathway alterations are sufficient to alter sensitivity of BRCA1/BRCA2-mutant breast epithelial cells to transformation as epithelial cells from BRCA1 mutation carriers overexpressing hTERT + PIK3CAH1047R generated adenocarcinomas, whereas similarly modified mutant BRCA2 cells generated basal carcinomas in NSG mice. Thus, our studies provide a high-resolution transcriptome atlas of breast epithelial cells of BRCA1 and BRCA2 mutation carriers and reveal their susceptibility to PIK3CA mutation-driven transformation. Significance: This study provides a single-cell atlas of breast tissues of BRCA1/2 mutation carriers and demonstrates that aberrant signaling due to BRCA1/2 mutations is sufficient to initiate breast cancer by mutant PIK3CA.Item Stromal heterogeneity may explain increased incidence of metaplastic breast cancer in women of African descent(Springer Nature, 2023-09-14) Kumar, Brijesh; Khatpe, Aditi S.; Guanglong, Jiang; Batic, Katie; Bhat-Nakshatri, Poornima; Granatir, Maggie M.; Addison, Rebekah Joann; Szymanski, Megan; Baldridge, Lee Ann; Temm, Constance J.; Sandusky, George; Althouse, Sandra K.; Cote, Michele L.; Miller, Kathy D.; Storniolo, Anna Maria; Nakshatri, Harikrishna; Surgery, School of MedicineThe biologic basis of genetic ancestry-dependent variability in disease incidence and outcome is just beginning to be explored. We recently reported enrichment of a population of ZEB1-expressing cells located adjacent to ductal epithelial cells in normal breasts of women of African ancestry compared to those of European ancestry. In this study, we demonstrate that these cells have properties of fibroadipogenic/mesenchymal stromal cells that express PROCR and PDGFRα and transdifferentiate into adipogenic and osteogenic lineages. PROCR + /ZEB1 + /PDGFRα+ (PZP) cells are enriched in normal breast tissues of women of African compared to European ancestry. PZP: epithelial cell communication results in luminal epithelial cells acquiring basal cell characteristics and IL-6-dependent increase in STAT3 phosphorylation. Furthermore, level of phospho-STAT3 is higher in normal and cancerous breast tissues of women of African ancestry. PZP cells transformed with HRasG12V ± SV40-T/t antigens generate metaplastic carcinoma suggesting that these cells are one of the cells-of-origin of metaplastic breast cancers.Item TONSL is an immortalizing oncogene and a therapeutic target in breast cancer(American Association for Cancer Research, 2023) Khatpe, Aditi S.; Dirks, Rebecca; Bhat-Nakshatri, Poornima; Mang, Henry; Batic, Katie; Swiezy, Sarah; Olson, Jacob; Rao, Xi; Wang, Yue; Tanaka, Hiromi; Liu, Sheng; Wan, Jun; Chen, Duojiao; Liu, Yunlong; Fang, Fang; Althouse, Sandra; Hulsey, Emily; Granatir, Maggie M.; Addison, Rebekah; Temm, Constance J.; Sandusky, George; Lee-Gosselin, Audrey; Nephew, Kenneth; Miller, Kathy D.; Nakshatri, Harikrishna; Surgery, School of MedicineStudy of genomic aberrations leading to immortalization of epithelial cells has been technically challenging due to the lack of isogenic models. To address this, we utilized healthy primary breast luminal epithelial cells of different genetic ancestry and their hTERT-immortalized counterparts to identify transcriptomic changes associated with immortalization. Elevated expression of TONSL (Tonsoku Like, DNA Repair Protein) was identified as one of the earliest events during immortalization. TONSL, which is located on chromosome 8q24.3, was found to be amplified in ~20% of breast cancers. TONSL alone immortalized primary breast epithelial cells and increased telomerase activity, but overexpression was insufficient for neoplastic transformation. However, TONSL-immortalized primary cells overexpressing defined oncogenes generated estrogen receptor-positive adenocarcinomas in mice. Analysis of a breast tumor microarray with ~600 tumors revealed poor overall and progression free survival of patients with TONSL overexpressing tumors. TONSL increased chromatin accessibility to pro-oncogenic transcription factors including NF-κB and limited access to the tumor suppressor p53. TONSL overexpression resulted in significant changes in the expression of genes associated with DNA repair hubs, including upregulation of several genes in the homologous recombination (HR) and Fanconi Anemia pathways. Consistent with these results, TONSL overexpressing primary cells exhibited upregulated DNA repair via HR. Moreover, TONSL was essential for growth of TONSL-amplified breast cancer cell lines in vivo, and these cells were sensitive to TONSL-FACT complex inhibitor CBL0137. Together, these findings identify TONSL as a regulator of epithelial cell immortalization to facilitate cancer initiation and as a target for breast cancer therapy.