- Browse by Author
Browsing by Author "Khambu, Bilon"
Now showing 1 - 10 of 19
Results Per Page
Sort Options
Item The Activation and Function of Autophagy in Alcoholic Liver Disease(Bentham Science Publishers, 2017) Khambu, Bilon; Wang, Lin; Zhang, Hao; Yin, Xiao-Ming; Pathology and Laboratory Medicine, School of MedicineItem Autophagy in Alcoholic Liver Disease, Self-eating Triggered by Drinking(Elsevier, 2015-09) Wang, Lin; Khambu, Bilon; Zhang, Hao; Yin, Xiao-Ming; Pathology and Laboratory Medicine, School of MedicineMacroautophagy (autophagy) is an evolutionarily conserved mechanism. It is important for normal cellular function and also plays critical roles in the etiology and pathogenesis of a number of human diseases. In alcohol-induced liver disease, autophagy is a protective mechanism against the liver injury caused by alcohol. Autophagy is activated in acute ethanol treatment but could be suppressed in chronic and/or high dose treatment of alcohol. The selective removal of lipid droplets and/or damaged mitochondria is likely the major mode of autophagy in reducing liver injury. Understanding the dynamics of the autophagy process and the approach to modulate autophagy could help finding new ways to battle against alcohol-induced liver injury.Item Autophagy in non-alcoholic fatty liver disease and alcoholic liver disease(Elsevier, 2018-09) Khambu, Bilon; Yan, Shengmin; Huda, Nazmul; Liu, Gang; Yin, Xiao-Ming; Pathology and Laboratory Medicine, School of MedicineAutophagy is an evolutionarily conserved intracellular degradative function that is important for liver homeostasis. Accumulating evidence suggests that autophagy is deregulated during the progression and development of alcoholic and non-alcoholic liver diseases. Impaired autophagy prevents the clearance of excessive lipid droplets (LDs), damaged mitochondria, and toxic protein aggregates, which can be generated during the progression of various liver diseases, thus contributing to the development of steatosis, injury, steatohepatitis, fibrosis, and tumors. In this review, we look at the status of hepatic autophagy during the pathogenesis of alcoholic and non-alcoholic liver diseases. We also examine the mechanisms of defects in autophagy, and the hepato-protective roles of autophagy in non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD), focusing mainly on steatosis and liver injury. Finally, we discuss the therapeutic potential of autophagy modulating agents for the treatment of these two common liver diseases.Item Autophagy induced by calcium phosphate precipitates targets damaged endosomes(ASBMB, 2014-04-18) Chen, Xi; Khambu, Bilon; Zhang, Hao; Gao, Wentao; Li, Min; Chen, Xiaoyun; Yoshimori, Tamotsu; Yin, Xiao-Ming; Department of Pathology & Laboratory Medicine, IU School of MedicineCalcium phosphate precipitates (CPPs) form complexes with DNA, which enter cells via endocytosis. Under this condition CPPs induce autophagy via the canonic autophagy machinery. Here we showed that CPP-induced autophagy was also dependent on endocytosis as the process was significantly inhibited by methyl-β-cyclodextrin and dynasore, which suppress clathrin-dependent endocytosis. Consistently, CPP treatment triggered the formation of filipin-positive intracellular vesicles whose membranes are rich in cholesterol. Unexpectedly, these vesicles were also positive for galectin 3, suggesting that they were damaged and the membrane glycans became accessible to galectins to bind. Endosome damage was caused by endocytosis of CPPs and was reversed by calcium chelators or by endocytosis inhibitors. Notably, CPP-induced LC3-positive autophagosomes were colocalized with galectin 3, ubiquitin, and p62/SQSTM1. Inhibition of galectin 3 reduced p62 puncta and autophagosome formation. Knockdown of p62 additionally inhibited the colocalization of autophagosomes with galectins. Furthermore, most of the galectin 3-positive vesicles were colocalized with Rab7 or LAMP1. Agents that affect endosome/lysosome maturation and function, such as bafilomycin A1, also significantly affected CPP-induced tubulovesicular autophagosome formation. These findings thus indicate that endocytosed CPPs caused endosome damage and recruitment of galectins, particularly at the later endosome stage, which led to the interaction of the autophagosomal membranes with the damaged endosome in the presence of p62.Item Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap(Nature Research, 2018-11-23) Lee, Youngmin A.; Noon, Luke A.; Akat, Kemal M.; Ybanez, Maria D.; Lee, Ting-Fang; Berres, Marie-Luise; Fujiwara, Naoto; Goossens, Nicolas; Chou, Hsin-I; Parvin-Nejad, Fatemeh P.; Khambu, Bilon; Kramer, Elisabeth G.M.; Gordon, Ronald; Pfleger, Cathie; Germain, Doris; John, Gareth R.; Campbell, Kirk N.; Yue, Zhenyu; Yin, Xiao-Ming; Cuervo, Ana Maria; Czaja, Mark J.; Fiel, M. Isabel; Hoshida, Yujin; Friedman, Scott L.; Pathology and Laboratory Medicine, School of MedicineActivation of the Hippo pathway effector Yap underlies many liver cancers, however no germline or somatic mutations have been identified. Autophagy maintains essential metabolic functions of the liver, and autophagy-deficient murine models develop benign adenomas and hepatomegaly, which have been attributed to activation of the p62/Sqstm1-Nrf2 axis. Here, we show that Yap is an autophagy substrate and mediator of tissue remodeling and hepatocarcinogenesis independent of the p62/Sqstm1-Nrf2 axis. Hepatocyte-specific deletion of Atg7 promotes liver size, fibrosis, progenitor cell expansion, and hepatocarcinogenesis, which is rescued by concurrent deletion of Yap. Our results shed new light on mechanisms of Yap degradation and the sequence of events that follow disruption of autophagy, which is impaired in chronic liver disease.Item Autophagy, Metabolism, and Alcohol-Related Liver Disease: Novel Modulators and Functions(MDPI, 2019-10-11) Yan, Shengmin; Khambu, Bilon; Hong, Honghai; Liu, Gang; Huda, Nazmul; Yin, Xiao-Ming; Pathology and Laboratory Medicine, School of MedicineAlcohol-related liver disease (ALD) is caused by over-consumption of alcohol. ALD can develop a spectrum of pathological changes in the liver, including steatosis, inflammation, cirrhosis, and complications. Autophagy is critical to maintain liver homeostasis, but dysfunction of autophagy has been observed in ALD. Generally, autophagy is considered to protect the liver from alcohol-induced injury and steatosis. In this review, we will summarize novel modulators of autophagy in hepatic metabolism and ALD, including autophagy-mediating non-coding RNAs (ncRNAs), and crosstalk of autophagy machinery and nuclear factors. We will also discuss novel functions of autophagy in hepatocytes and non-parenchymal hepatic cells during the pathogenesis of ALD and other liver diseases.Item Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply(Taylor & Francis, 2018) Zhang, Hao; Yan, Shengmin; Khambu, Bilon; Ma, Fengguang; Li, Yong; Chen, Xiaoyun; Puertollano, Rosa; Li, Yu; Chalasani, Naga; Yin, Xiao-Ming; Martina, Jose A.; Pathology & Laboratory Medicine, IU School of MedicineNormal metabolism requires a controlled balance between anabolism and catabolism. It is not completely known how this balance can be retained when the level of nutrient supply changes in the long term. We found that in murine liver anabolism, as represented by the phosphorylation of RPS6KB (ribosomal protein S6 kinase), was soon elevated while catabolism, as represented by TFEB (transcription factor EB)-directed gene transcription and lysosomal activities, was downregulated after the administration of a high-fat diet (HFD). Surprisingly, neither the alteration in RPS6KB phosphorylation nor that in TFEB functions was static over the long course of HFD feeding. Instead, the 2 signals exhibited dynamic alterations in opposite directions, which could be explained by the dependence of MTORC1 (MTOR complex 1) activation on TFEB-supported lysosome function and the feedback suppression of TFEB by MTORC1. Disruption of the dynamics by enforced expression of TFEB in HFD-fed mice at the peaks of MTORC1 activation restored lysosome function. Consistently, interference of MTORC1 activation with rapamycin or with a constitutively activated RRAGA mutant at the peak or nadir of MTORC1 oscillation enhanced or reduced the lysosome function, respectively. These treatments also improved or exacerbated hepatic steatosis and liver injury, respectively. Finally, there was a significant inverse correlation between TFEB activation and steatosis severity in the livers of patients with non-alcohol fatty liver diseases, supporting the clinical relevance of TFEB-regulated events. Thus, maintaining catabolic function through feedback mechanisms during enhanced anabolism, which is caused by nutrient oversupply, is important for reducing liver pathology.Item Gene Expression Analysis Indicates Divergent Mechanisms in DEN-Induced Carcinogenesis in Wild Type and Bid-Deficient Livers(Public Library of Science (PLoS), 2016) Yu, Changshun; Yan, Shengmin; Khambu, Bilon; Chen, Xiaoyun; Dong, Zheng; Luo, Jianhua; Michalopoulos, George K.; Wu, Shangwei; Yin, Xiao-Ming; Department of Pathology & Laboratory Medicine, IU School of MedicineBid is a Bcl-2 family protein. In addition to its pro-apoptosis function, Bid can also promote cell proliferation, maintain S phase checkpoint, and facilitate inflammasome activation. Bid plays important roles in tissue injury and regeneration, hematopoietic homeostasis, and tumorigenesis. Bid participates in hepatic carcinogenesis but the mechanism is not fully understood. Deletion of Bid resulted in diminished tumor burden and delayed tumor progression in a liver cancer model. In order to better understand the Bid-regulated events during hepatic carcinogenesis we performed gene expression analysis in wild type and bid-deficient mice treated with a hepatic carcinogen, diethylnitrosamine. We found that deletion of Bid caused significantly fewer alterations in gene expression in terms of the number of genes affected and the number of pathways affected. In addition, the expression profiles were remarkably different. In the wild type mice, there was a significant increase in the expression of growth regulation-related and immune/inflammation response-related genes, and a significant decrease in the expression of metabolism-related genes, both of which were diminished in bid-deficient livers. These data suggest that Bid could promote hepatic carcinogenesis via growth control and inflammation-mediated events.Item Hepatic Autophagy Deficiency Compromises FXR Functionality and Causes Cholestatic Injury(AASLD, 2019) Khambu, Bilon; Li, Tiangang; Yan, Shengmin; Yu, Changshun; Chen, Xiaoyun; Goheen, Michael; Li, Yong; Lin, Jingmei; Cummings, Oscar W.; Lee, Youngmin A.; Friedman, Scott; Dong, Zheng; Feng, Gen-Sheng; Wu, Shangwei; Yin, Xiao-Ming; Pathology and Laboratory Medicine, School of MedicineAutophagy is important for hepatic homeostasis, nutrient regeneration and organelle quality control. We investigated the mechanisms by which liver injury occurred in the absence of autophagy function. We found that mice deficient in autophagy due to the lack of Atg7 or Atg5, key autophagy‐related genes, manifested intracellular cholestasis with increased levels of serum bile acids, a higher ratio of TMCA/TCA in the bile, increased hepatic bile acid load, abnormal bile canaliculi and altered expression of hepatic transporters. In determining the underlying mechanism, we found that autophagy sustained and promoted the basal and upregulated expression of Fxr in the fed and starved conditions, respectively. Consequently, expression of Fxr and its downstream genes, particularly Bsep, and the binding of FXR to the promoter regions of these genes, were suppressed in autophagy‐deficient livers. In addition, co‐deletion of Nrf2 in autophagy deficiency status reversed the FXR suppression. Furthermore, the cholestatic injury of autophagy‐deficient livers was reversed by enhancement of FXR activity or expression, or by Nrf2 deletion.Item Hepatic Autophagy Deficiency Remodels Gut Microbiota for Adaptive Protection via FGF15-FGFR4 Signaling(Elsevier, 2021) Yan, Shengmin; Khambu, Bilon; Chen, Xiaoyun; Dong, Zheng; Guo, Grace; Yin, Xiao-Ming; Pathology and Laboratory Medicine, School of MedicineBackground & aims: The functions of the liver and the intestine are closely tied in both physiological and pathologic conditions. The gut microbiota (GM) often cause deleterious effects during hepatic pathogenesis. Autophagy is essential for liver homeostasis, but the impact of hepatic autophagy function on liver-gut interaction remains unknown. Here we investigated the effect of hepatic autophagy deficiency (Atg5Δhep) on GM and in turn the effect of GM on the liver pathology. Methods: Fecal microbiota were analyzed by 16S sequencing. Antibiotics were used to modulate GM. Cholestyramine was used to reduce the enterohepatic bile acid (BA) level. The functional role of fibroblast growth factor 15 (FGF15) and ileal farnesoid X receptor (FXR) was examined in mice overexpressing FGF15 gene or in mice given a fibroblast growth factor receptor-4 (FGFR4) inhibitor. Results: Atg5Δhep causes liver injury and alterations of intestinal BA composition, with a lower proportion of tauro-conjugated BAs and a higher proportion of unconjugated BAs. The composition of GM is significantly changed with an increase in BA-metabolizing bacteria, leading to an increased expression of ileal FGF15 driven by FXR that has a higher affinity to unconjugated BAs. Notably, antibiotics or cholestyramine treatment decreased FGF15 expression and exacerbated liver injury. Consistently, inhibition of FGF15 signaling in the liver enhances liver injury. Conclusions: Deficiency of autophagy function in the liver can affect intestinal environment, leading to gut dysbiosis. Surprisingly, such changes provide an adaptive protection against the liver injury through the FGF15-FGFR4 signaling. Antibiotics use in the condition of liver injury may thus have unexpected adverse consequences via the gut-liver axis.