ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ketterer, Margaret R."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Desialylation of Neisseria gonorrhoeae Lipooligosaccharide by Cervicovaginal Microbiome Sialidases: The Potential for Enhancing Infectivity in Men
    (Oxford University Press, 2016-12-01) Ketterer, Margaret R.; Rice, Peter A.; Gulati, Sunita; Kiel, Steven; Byerly, Luke; Fortenberry, J. Dennis; Soper, David E.; Apicella, Michael A.; Pediatrics, School of Medicine
    Previous studies have demonstrated that Neisseria gonorrhoeae sialylates the terminal N-acetyllactosamine present on its lipooligosaccharide (LOS) by acquiring CMP-N-acetyl-5-neuraminic acid upon entering human cells during infection. This renders the organism resistant to killing by complement in normal human serum. N-acetyllactosamine residues on LOS must be free of N-acetyl-5-neuraminc acid (Neu5Ac; also known as "sialic acid") in order for organisms to bind to and enter urethral epithelial cells during infection in men. This raises the question of how the gonococcus infects men if N-acetyllactosamine residues are substituted by Neu5Ac during infection in women. Here, we demonstrate that women with gonococcal infections have levels of sialidases present in cervicovaginal secretions that can result in desialylation of (sialylated) gonococcal LOS. The principle sialidases responsible for this desialylation appear to be bacterial in origin. These studies suggest that members of the cervicovaginal microbiome can modify N. gonorrhoeae, which will enhance successful transmission to men.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University