- Browse by Author
Browsing by Author "Kemp, Arika D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effects of tissue hydration on nanoscale structural morphology and mechanics of individual Type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta(2012-12) Kemp, Arika D.; Harding, Chad C.; Cabral, Wayne A.; Marini, Joan C.; Wallace, Joseph M.Type I collagen is the most abundant protein in mammals, and is a vital part of the extracellular matrix for numerous tissues. Despite collagen’s importance, little is known about its nanoscale morphology in tissues and how morphology relates to mechanical function. This study probes nanoscale structure and mechanical properties of collagen as a function of disease in native hydrated tendons. Wild type tendon and tendon from the Brtl/+ mouse model of Osteogenesis Imperfecta were investigated. An atomic force microscope (AFM) was used to image and indent minimally-processed collagen fibrils in hydrated and dehydrated conditions. AFM was used because of the ability to keep biological tissues as close to their native in situ conditions as possible. The study demonstrated phenotypic difference in Brtl/+ fibril morphology and mechanics in hydrated tendon which became more compelling upon dehydration. Dried tendons had a significant downward shift in fibril D- periodic spacing versus a shift up in wet tendons. Nanoscale changes in morphology in dry samples were accompanied by significant increases in modulus and adhesion force and decreased indentation depth. A minimal mechanical phenotype existed in hydrated samples, possibly due to water masking structural defects within the diseased fibrils. This study demonstrates that collagen nanoscale morphology and mechanics are impacted in Brtl/+ tendons, and that the phenotype can be modulated by the presence or absence of water. Dehydration causes artifacts in biological samples which require water and this factor must be considered for studies at any length scale in collagen-based tissues, especially when characterizing disease- induced differences.Item Peripheral Venous Retroperfusion: Implications for Critical Limb Ischemia and Salvage(2014-12) Kemp, Arika D.; Kassab, Ghassan S. (Ghassan Sleewa), 1965-; Unthank, Joseph L., 1954-; Combs, WilliamPeripheral arterial disease is caused by plaque buildup in the peripheral arteries. Standard treatments are available when the blockage is proximal and focal, however when distal and diffuse the same type of the treatment options are not beneficial due to the diseased locations. Restoration of blood flow and further salvaging of the limb in these patients can occur in a retrograde manner through the venous system, called retroperfusion or arteriovenous reversal. Retroperfusion has been explored over the last century, where early side to side artery to venous connections had issues with valve competency prohibiting distal flows, edema buildup, and heart failure. However, more recent clinical studies create a bypass to a foot vein to ensure distal flows, and though the results have been promising, it requires a lengthy invasive procedure. It is our belief that the concerns of both retroperfusion approaches can be overcome in a minimally invasive/catheter based approach in which the catheter is engineered to a specific resistance that avoids edema and the perfusion location allows for valves to be passable and flow to reach distally. In this approach, the pressure flow relations were characterized in the retroperfused venous system in ex-vivo canine legs to locate the optimal perfusion location followed by in-vivo validation of canines. Six canines were acutely injured for 1-3 hours by surgical ligation of the terminal aorta and both external iliac arteries. Retroperfusion was successfully performed on five of the dogs at the venous popliteal bifurcation for approximately one hour, where flow rates at peak pressures reached near half of forward flow (37±3 vs. 84±27ml/min) and from which the slope of the P/F curves displayed a retro venous vasculature resistance that was used to calculate the optimal catheter resistance. To assess differences in regional perfusion, microspheres were passed during retroperfusion and compared to baseline microspheres passed arterially prior to occlusion in which the ratio of retroperfusion and forward perfusion levels were near the ratio of reversed and forward venous flow (0.44) throughout the limb. Decreases in critical metabolites during injury trended towards normal levels post-retroperfusion. By identifying the popliteal bifurication as a perfusion site to restore blood flow in the entirety of the distal ischemic limb, showing reversal of injury, and knowing what catheter resistances to target for further chronic studies, steps towards controlled retroperfusion and thus more efficient treatment options can be made for severe PAD patients.