- Browse by Author
Browsing by Author "Kelly, Tanika N."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Rare variants in long non-coding RNAs are associated with blood lipid levels in the TOPMed Whole Genome Sequencing Study(medRxiv, 2023-06-29) Wang, Yuxuan; Selvaraj, Margaret Sunitha; Li, Xihao; Li, Zilin; Holdcraft, Jacob A.; Arnett, Donna K.; Bis, Joshua C.; Blangero, John; Boerwinkle, Eric; Bowden, Donald W.; Cade, Brian E.; Carlson, Jenna C.; Carson, April P.; Chen, Yii-Der Ida; Curran, Joanne E.; de Vries, Paul S.; Dutcher, Susan K.; Ellinor, Patrick T.; Floyd, James S.; Fornage, Myriam; Freedman, Barry I.; Gabriel, Stacey; Germer, Soren; Gibbs, Richard A.; Guo, Xiuqing; He, Jiang; Heard-Costa, Nancy; Hildalgo, Bertha; Hou, Lifang; Irvin, Marguerite R.; Joehanes, Roby; Kaplan, Robert C.; Kardia, Sharon Lr.; Kelly, Tanika N.; Kim, Ryan; Kooperberg, Charles; Kral, Brian G.; Levy, Daniel; Li, Changwei; Liu, Chunyu; Lloyd-Jone, Don; Loos, Ruth Jf.; Mahaney, Michael C.; Martin, Lisa W.; Mathias, Rasika A.; Minster, Ryan L.; Mitchell, Braxton D.; Montasser, May E.; Morrison, Alanna C.; Murabito, Joanne M.; Naseri, Take; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Preuss, Michael H.; Psaty, Bruce M.; Raffield, Laura M.; Rao, Dabeeru C.; Redline, Susan; Reiner, Alexander P.; Rich, Stephen S.; Ruepena, Muagututi'a Sefuiva; Sheu, Wayne H-H; Smith, Jennifer A.; Smith, Albert; Tiwari, Hemant K.; Tsai, Michael Y.; Viaud-Martinez, Karine A.; Wang, Zhe; Yanek, Lisa R.; Zhao, Wei; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Rotter, Jerome I.; Lin, Xihong; Natarajan, Pradeep; Peloso, Gina M.; Biostatistics and Health Data Science, School of MedicineLong non-coding RNAs (lncRNAs) are known to perform important regulatory functions. Large-scale whole genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess the associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with blood lipid levels (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare variant aggregate association tests using the STAAR (variant-Set Test for Association using Annotation infoRmation) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare coding variants in nearby protein coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500 kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variations and rare protein coding variations at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNA, implicating new therapeutic opportunities.Item Whole Genome Sequence Association Analysis of Fasting Glucose and Fasting Insulin Levels in Diverse Cohorts from the NHLBI TOPMed Program(Springer Nature, 2022-07-28) DiCorpo, Daniel; Gaynor, Sheila M.; Russell, Emily M.; Westerman, Kenneth E.; Raffield, Laura M.; Majarian, Timothy D.; Wu, Peitao; Sarnowski, Chloé; Highland, Heather M.; Jackson, Anne; Hasbani, Natalie R.; de Vries, Paul S.; Brody, Jennifer A.; Hidalgo, Bertha; Guo, Xiuqing; Perry, James A.; O’Connell, Jeffrey R.; Lent, Samantha; Montasser, May E.; Cade, Brian E.; Jain, Deepti; Wang, Heming; D’Oliveira Albanus, Ricardo; Varshney, Arushi; Yanek, Lisa R.; Lange, Leslie; Palmer, Nicholette D.; Almeida, Marcio; Peralta, Juan M.; Aslibekyan, Stella; Baldridge, Abigail S.; Bertoni, Alain G.; Bielak, Lawrence F.; Chen, Chung-Shiuan; Chen, Yii-Der Ida; Choi, Won Jung; Goodarzi, Mark O.; Floyd, James S.; Irvin, Marguerite R.; Kalyani, Rita R.; Kelly, Tanika N.; Lee, Seonwook; Liu, Ching-Ti; Loesch, Douglas; Manson, JoAnn E.; Minster, Ryan L.; Naseri, Take; Pankow, James S.; Rasmussen-Torvik, Laura J.; Reiner, Alexander P.; Reupena, Muagututi’a Sefuiva; Selvin, Elizabeth; Smith, Jennifer A.; Weeks, Daniel E.; Xu, Huichun; Yao, Jie; Zhao, Wei; Parker, Stephen; Alonso, Alvaro; Arnett, Donna K.; Blangero, John; Boerwinkle, Eric; Correa, Adolfo; Cupples, L. Adrienne; Curran, Joanne E.; Duggirala, Ravindranath; He, Jiang; Heckbert, Susan R.; Kardia, Sharon L.R.; Kim, Ryan W.; Kooperberg, Charles; Liu, Simin; Mathias, Rasika A.; McGarvey, Stephen T.; Mitchell, Braxton D.; Morrison, Alanna C.; Peyser, Patricia A.; Psaty, Bruce M.; Redline, Susan; Shuldiner, Alan R.; Taylor, Kent D.; Vasan, Ramachandran S.; Viaud-Martinez, Karine A.; Florez, Jose C.; Wilson, James G.; Sladek, Robert; Rich, Stephen S.; Rotter, Jerome I.; Lin, Xihong; Dupuis, Josée; Meigs, James B.; Wessel, Jennifer; Manning, Alisa K.; Epidemiology, School of Public HealthThe genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI's Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits.Item Whole Genome Sequencing Analysis of Body Mass Index Identifies Novel African Ancestry-Specific Risk Allele(medRxiv, 2023-08-22) Zhang, Xinruo; Brody, Jennifer A.; Graff, Mariaelisa; Highland, Heather M.; Chami, Nathalie; Xu, Hanfei; Wang, Zhe; Ferrier, Kendra; Chittoor, Geetha; Josyula, Navya S.; Li, Xihao; Li, Zilin; Allison, Matthew A.; Becker, Diane M.; Bielak, Lawrence F.; Bis, Joshua C.; Boorgula, Meher Preethi; Bowden, Donald W.; Broome, Jai G.; Buth, Erin J.; Carlson, Christopher S.; Chang, Kyong-Mi; Chavan, Sameer; Chiu, Yen-Feng; Chuang, Lee-Ming; Conomos, Matthew P.; DeMeo, Dawn L.; Du, Margaret; Duggirala, Ravindranath; Eng, Celeste; Fohner, Alison E.; Freedman, Barry I.; Garrett, Melanie E.; Guo, Xiuqing; Haiman, Chris; Heavner, Benjamin D.; Hidalgo, Bertha; Hixson, James E.; Ho, Yuk-Lam; Hobbs, Brian D.; Hu, Donglei; Hui, Qin; Hwu, Chii-Min; Jackson, Rebecca D.; Jain, Deepti; Kalyani, Rita R.; Kardia, Sharon L. R.; Kelly, Tanika N.; Lange, Ethan M.; LeNoir, Michael; Li, Changwei; Marchand, Loic Le; McDonald, Merry-Lynn N.; McHugh, Caitlin P.; Morrison, Alanna C.; Naseri, Take; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; O'Connell, Jeffrey; O'Donnell, Christopher J.; Palmer, Nicholette D.; Pankow, James S.; Perry, James A.; Peters, Ulrike; Preuss, Michael H.; Rao, D. C.; Regan, Elizabeth A.; Reupena, Sefuiva M.; Roden, Dan M.; Rodriguez-Santana, Jose; Sitlani, Colleen M.; Smith, Jennifer A.; Tiwari, Hemant K.; Vasan, Ramachandran S.; Wang, Zeyuan; Weeks, Daniel E.; Wessel, Jennifer; Wiggins, Kerri L.; Wilkens, Lynne R.; Wilson, Peter W. F.; Yanek, Lisa R.; Yoneda, Zachary T.; Zhao, Wei; Zöllner, Sebastian; Arnett, Donna K.; Ashley-Koch, Allison E.; Barnes, Kathleen C.; Blangero, John; Boerwinkle, Eric; Burchard, Esteban G.; Carson, April P.; Chasman, Daniel I.; Chen, Yii-Der Ida; Curran, Joanne E.; Fornage, Myriam; Gordeuk, Victor R.; He, Jiang; Heckbert, Susan R.; Hou, Lifang; Irvin, Marguerite R.; Kooperberg, Charles; Minster, Ryan L.; Mitchell, Braxton D.; Nouraie, Mehdi; Psaty, Bruce M.; Raffield, Laura M.; Reiner, Alexander P.; Rich, Stephen S.; Rotter, Jerome I.; Shoemaker, M. Benjamin; Smith, Nicholas L.; Taylor, Kent D.; Telen, Marilyn J.; Weiss, Scott T.; Zhang, Yingze; Heard-Costa, Nancy; Sun, Yan V.; Lin, Xihong; Cupples, L. Adrienne; Lange, Leslie A.; Liu, Ching-Ti; Loos, Ruth J. F.; North, Kari E.; Justice, Anne E.; Biostatistics and Health Data Science, School of MedicineObesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of non-European population groups. We discovered 18 BMI-associated signals (P < 5 × 10−9). Notably, we identified and replicated a novel low frequency single nucleotide polymorphism (SNP) in MTMR3 that was common in individuals of African descent. Using a diverse study population, we further identified two novel secondary signals in known BMI loci and pinpointed two likely causal variants in the POC5 and DMD loci. Our work demonstrates the benefits of combining WGS and diverse cohorts in expanding current catalog of variants and genes confer risk for obesity, bringing us one step closer to personalized medicine.