- Browse by Author
Browsing by Author "Kelly, Rachel S."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Author Correction: Whole-Genome Sequencing Analysis of Human Metabolome in Multi-Ethnic Populations(Springer Nature, 2023-10-19) Feofanova, Elena V.; Brown, Michael R.; Alkis, Taryn; Manuel, Astrid M.; Li, Xihao; Tahir, Usman A.; Li, Zilin; Mendez, Kevin M.; Kelly, Rachel S.; Qi, Qibin; Chen, Han; Larson, Martin G.; Lemaitre, Rozenn N.; Morrison, Alanna C.; Grieser, Charles; Wong, Kari E.; Gerszten, Robert E.; Zhao, Zhongming; Lasky-Su, Jessica; NHLBI Trans-Omics for Precision Medicine (TOPMed); Yu, Bing; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthCorrection to: Nature Communications 10.1038/s41467-023-38800-2, published online 30 May2023 In this article, the author name Robert E. Gerszten was incorrectly written as Robert E. Gersztern. The original article has been corrected.Item NHLBI-CMREF Workshop Report on Pulmonary Vascular Disease Classification: JACC State-of-the-Art Review(Elsevier, 2021) Oldham, William M.; Hemnes, Anna R.; Aldred, Micheala A.; Barnard, John; Brittain, Evan L.; Chan, Stephen Y.; Cheng, Feixiong; Cho, Michael H.; Desai, Ankit A.; Garcia, Joe G.N.; Geraci, Mark W.; Ghiassian, Susan D.; Hall, Kathryn T.; Horn, Evelyn M.; Jain, Mohit; Kelly, Rachel S.; Leopold, Jane A.; Lindstrom, Sara; Modena, Brian D.; Nichols, William C.; Rhodes, Christopher J.; Sun, Wei; Sweatt, Andrew J.; Vanderpool, Rebecca R.; Wilkins, Martin R.; Wilmot, Beth; Zamanian, Roham T.; Fessel, Joshua P.; Aggarwal, Neil R.; Loscalzo, Joseph; Xiao, Lei; Medicine, School of MedicineThe National Heart, Lung, and Blood Institute and the Cardiovascular Medical Research and Education Fund held a workshop on the application of pulmonary vascular disease omics data to the understanding, prevention, and treatment of pulmonary vascular disease. Experts in pulmonary vascular disease, omics, and data analytics met to identify knowledge gaps and formulate ideas for future research priorities in pulmonary vascular disease in line with National Heart, Lung, and Blood Institute Strategic Vision goals. The group identified opportunities to develop analytic approaches to multiomic datasets, to identify molecular pathways in pulmonary vascular disease pathobiology, and to link novel phenotypes to meaningful clinical outcomes. The committee suggested support for interdisciplinary research teams to develop and validate analytic methods, a national effort to coordinate biosamples and data, a consortium of preclinical investigators to expedite target evaluation and drug development, longitudinal assessment of molecular biomarkers in clinical trials, and a task force to develop a master clinical trials protocol for pulmonary vascular disease.Item Whole-Genome Sequencing Analysis of Human Metabolome in Multi-Ethnic Populations(Springer Nature, 2023-05-30) Feofanova, Elena V.; Brown, Michael R.; Alkis, Taryn; Manuel, Astrid M.; Li, Xihao; Tahir, Usman A.; Li, Zilin; Mendez, Kevin M.; Kelly, Rachel S.; Qi, Qibin; Chen, Han; Larson, Martin G.; Lemaitre, Rozenn N.; Morrison, Alanna C.; Grieser, Charles; Wong, Kari E.; Gerszten, Robert E.; Zhao, Zhongming; Lasky-Su, Jessica; NHLBI Trans-Omics for Precision Medicine (TOPMed); Yu, Bing; Biostatistics and Health Data Science, School of MedicineCirculating metabolite levels may reflect the state of the human organism in health and disease, however, the genetic architecture of metabolites is not fully understood. We have performed a whole-genome sequencing association analysis of both common and rare variants in up to 11,840 multi-ethnic participants from five studies with up to 1666 circulating metabolites. We have discovered 1985 novel variant-metabolite associations, and validated 761 locus-metabolite associations reported previously. Seventy-nine novel variant-metabolite associations have been replicated, including three genetic loci located on the X chromosome that have demonstrated its involvement in metabolic regulation. Gene-based analysis have provided further support for seven metabolite-replicated loci pairs and their biologically plausible genes. Among those novel replicated variant-metabolite pairs, follow-up analyses have revealed that 26 metabolites have colocalized with 21 tissues, seven metabolite-disease outcome associations have been putatively causal, and 7 metabolites might be regulated by plasma protein levels. Our results have depicted the genetic contribution to circulating metabolite levels, providing additional insights into understanding human disease.