- Browse by Author
Browsing by Author "Kelley, Mark Richard, 1957-"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Developing small molecule inhibitors targeting Replication Protein A for platinum-based combination therapy(2014) Mishra, Akaash K.; Turchi, John J.; Kelley, Mark Richard, 1957-; Hurley, Thomas D., 1961-; Zhang, Zhong-YinAll platinum (Pt)-based chemotherapeutics exert their efficacy primarily via the formation of DNA adducts which interfere with DNA replication, transcription and cell division and ultimately induce cell death. Repair and tolerance of Pt-DNA lesions by nucleotide excision repair and homologous recombination (HR) can substantially reduce the effectiveness of the Pt therapy. Inhibition of these repair pathways, therefore, holds the potential to sensitize cancer cells to Pt treatment and increase clinical efficacy. Replication Protein A (RPA) plays essential roles in both NER and HR, along with its role in DNA replication and DNA damage checkpoint activation. Each of these functions requires RPA binding to single-stranded DNA (ssDNA). We synthesized structural analogs of our previously reported RPA inhibitor TDRL-505, determined the structure activity relationships and evaluated their efficacy in tissue culture models of epithelial ovarian cancer (EOC) and non-small cell lung cancer (NSCLC). These data led us to the identification of TDRL-551, which exhibited a greater than 2-fold increase in in vitro and cellular activity. TDRL-551 showed synergy with Pt in tissue culture models of EOC and in vivo efficacy, as a single agent and in combination with platinum, in a NSCLC xenograft model. These data demonstrate the utility of RPA inhibition in EOC and NSCLC and the potential in developing novel anticancer therapeutics that target RPA-DNA interactions.Item Identification of novel small molecule inhibitors of proteins required for genomic maintenance and stability(2010-06) Shuck, Sarah C.; Turchi, John J.; Kelley, Mark Richard, 1957-; Hurley, Thomas D., 1961-; Witzmann, F. A. (Frank A.)Targeting uncontrolled cell proliferation and resistance to DNA damaging chemotherapeutics using small molecule inhibitors of proteins involved in these pathways has significant potential in cancer treatment. Several proteins involved in genomic maintenance and stability have been implicated both in the development of cancer and the response to chemotherapeutic treatment. Replication Protein A, RPA, the eukaryotic single-strand DNA binding protein, is essential for genomic maintenance and stability via roles in both DNA replication and repair. Xeroderma Pigmentosum Group A, XPA, is required for nucleotide excision repair, the main pathway cells employ to repair bulky DNA adducts. Both of these proteins have been implicated in tumor progression and chemotherapeutic response. We have identified a novel small molecule that inhibits the in vitro and cellular ssDNA binding activity of RPA, prevents cell cycle progression, induces cytotoxicity and increases the efficacy of chemotherapeutic DNA damaging agents. These results provide new insight into the mechanism of RPA-ssDNA interactions in chromosome maintenance and stability. We have also identified small molecules that prevent the XPA-DNA interaction, which are being investigated for cellular and tumor activity. These results demonstrate the first molecularly targeted eukaryotic DNA binding inhibitors and reveal the utility of targeting a protein-DNA interaction as a therapeutic strategy for cancer treatment.Item Inhibition of Ape1's DNA Repair Activity as a Target in Cancer: Identification of Novel Small Molecules that have Translational Potential for Molecularly Targeted Cancer Therapy(2009-12) Bapat, Aditi Ajit; Kelley, Mark Richard, 1957-; Georgiadis, Millie M.; Turchi, John J.; Smith, Martin L.The DNA Base Excision Repair (BER) pathway repairs DNA damaged by endogenous and exogenous agents including chemotherapeutic agents. Removal of the damaged base by a DNA glycosylase creates an apurinic / apyrimidinic (AP) site. AP endonuclease1 (Ape1), a critical component in this pathway, hydrolyzes the phosphodiester backbone 5’ to the AP site to facilitate repair. Additionally, Ape1 also functions as a redox factor, known as Ref-1, to reduce and activate key transcription factors such as AP-1 (Fos/Jun), p53, HIF-1α and others. Elevated Ape1 levels in cancers are indicators of poor prognosis and chemotherapeutic resistance, and removal of Ape1 via methodology such as siRNA sensitizes cancer cell lines to chemotherapeutic agents. However, since Ape1 is a multifunctional protein, removing it from cells not only inhibits its DNA repair activity but also impairs its other functions. Our hypothesis is that a small molecule inhibitor of the DNA repair activity of Ape1 will help elucidate the importance (role) of its repair function in cancer progression as wells as tumor drug response and will also give us a pharmacological tool to enhance cancer cells’ sensitivity to chemotherapy. In order to discover an inhibitor of Ape1’s DNA repair function, a fluorescence-based high-throughput screening (HTS) assay was used to screen a library of drug-like compounds. Four distinct compounds (AR01, 02, 03 and 06) that inhibited Ape1’s DNA repair activity were identified. All four compounds inhibited the DNA repair activity of purified Ape1 protein and also inhibited Ape1’s activity in cellular extracts. Based on these and other in vitro studies, AR03 was utilized in cell culture-based assays to test our hypothesis that inhibition of the DNA repair activity of Ape1 would sensitize cancer cells to chemotherapeutic agents. The SF767 glioblastoma cell line was used in our assays as the chemotherapeutic agents used to treat gliobastomas induce lesions repaired by the BER pathway. AR03 is cytotoxic to SF767 glioblastoma cancer cells as a single agent and enhances the cytotoxicity of alkylating agents, which is consistent with Ape1’s inability to process the AP sites generated. I have identified a compound, which inhibits Ape1’s DNA repair activity and may have the potential in improving chemotherapeutic efficacy of selected chemotherapeutic agents as well as to help us understand better the role of Ape1’s repair function as opposed to its other functions in the cell.Item Paclitaxel alters the function of the small diameter sensory neurons(2011-07-08) Gracias, Neilia; Vasko, Michael R.; Brustovetsky, Nickolay; Hingtgen, Cynthia M., 1966-; Hudmon, Andrew; Kelley, Mark Richard, 1957-Although paclitaxel is a commonly used anti-neoplastic agent for the treatment of solid tumors, therapy often results in a number of side effects, the most debilitating of which is peripheral neuropathy. Peripheral neuropathy is defined as a pathology of peripheral nerves, and, depending on the type of nerves damaged, the neuropathy can be classified as sensory, motor, or autonomic neuropathy. In the case of peripheral neuropathy induced by paclitaxel, the symptoms are experienced in the extremities and are sensory in nature. Patients undergoing chemotherapy with paclitaxel often report sensory disturbances such as burning, tingling, numbness, a diminished sensation to pain and temperature, loss of vibration sense, loss of proprioception, and loss of deep tendon reflexes. Electrophysiological abnormalities including decreased sensory nerve action potential amplitude and conduction confirm damage to large myelinated fibers. However, the involvement of damage to small diameter sensory neurons in the etiology of paclitaxel – induced peripheral neuropathy is still controversial. Therefore, experiments were performed to determine if paclitaxel alters the function of small diameter sensory neurons and to examine the mechanisms responsible for the change in function. vi Sensory neuron mediated vasodilatation in paclitaxel – injected animals was examined as an indirect measure of calcitonin gene related peptide (CGRP) release and therefore of sensory neuron function. CGRP release was also directly measured from central terminals in the spinal cord. To examine mechanisms of paclitaxel – induced sensory neuron damage, CGRP release and neurite length was examined in paclitaxel – treated sensory neurons in culture. The results demonstrate that (1) paclitaxel decreases the ability of small diameter sensory neurons to produce an increase in blood flow in the skin; (2) paclitaxel alters the release of CGRP from the small diameter sensory neurons; (3) paclitaxel causes the neuronal processes of isolated sensory neurons to degenerate. This dissertation provides novel information showing that paclitaxel alters the function of small diameter sensory neurons and thus provides a better understanding of the mechanisms mediating the sensory disturbances characteristic of peripheral neuropathy resulting from chemotherapy with paclitaxel.