- Browse by Author
Browsing by Author "Kaur, Harpreet"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item CTAB-crafted ZnO nanostructures for environmental remediation and pathogen control(Springer Nature, 2024-09-04) Gaur, Jyoti; Kumar, Sanjeev; Zineddine, Mhamed; Kaur, Harpreet; Pal, Mohinder; Bala, Kanchan; Kumar, Vanish; Lotey, Gurmeet Singh; Musa, Mustapha; El Outassi, Omar; Physics, School of ScienceThis study addresses the critical need for efficient and sustainable methods to tackle organic pollutants and microbial contamination in water. The present work aim was to investigate the potential of multi-structured zinc oxide nanoparticles (ZnO NPs) for the combined photocatalytic degradation of organic pollutants and antimicrobial activity. A unique fusion of precipitation-cum-hydrothermal approaches was precisely employed to synthesize the ZnO NPs, resulting in remarkable outcomes. The synthesized CTAB/ZnO NPs demonstrated exceptional properties: they were multi-structured and crystalline with a size of 40 nm and possessed a narrow band gap energy of 2.82 eV, enhancing light absorption for photocatalysis. These nanoparticles achieved an impressive degradation efficiency of 91.75% for Reactive Blue-81 dye within 105 min under UV irradiation. Furthermore, their photocatalytic performance metrics were outstanding, including a quantum yield of 1.73 × 10-4 Φ, a kinetic reaction rate of 3.89 × 102 µmol g-1 h-1, a space-time yield of 8.64 × 10-6 molecules photon-1 mg-1, and a figure-of-merit of 1.03 × 10-9 mol L J-1 g-1 h-1. Notably, the energy consumption was low at 1.73 × 10-4 J mol-1, compared to other systems. Additionally, the ZnO NPs exhibited effective antimicrobial activity against S. aureus and P. aeruginosa. This research underscores the potential of tailored ZnO NPs as a versatile solution for addressing both organic pollution and microbial contamination in water treatment processes. The low energy consumption further enhances its attractiveness as a sustainable solution.Item High-temperature stability and phase transformations of titanium carbide (Ti3C2Tx) MXene(IOP, 2021-06) Wyatt, Brian C.; Nemani, Srinivasa Kartik; Desai, Krishay; Kaur, Harpreet; Zhang, Bowen; Anasori, Babak; Mechanical and Energy Engineering, School of Engineering and TechnologyTwo-dimensional (2D) transition metal carbides, nitrides, and carbonitrides, known as MXenes, are under increasing pressure to meet technological demands in high-temperature applications, as MXenes can be considered to be one of the few ultra-high temperature 2D materials. Although there are studies on the stability of their surface functionalities, there is currently a gap in the fundamental understanding of their phase stability and transformation of MXenes' metal carbide core at high temperatures (>700 °C) in an inert environment. In this study, we conduct systematic annealing of Ti3C2TxMXene films in which we present the 2D MXene flake phase transformation to ordered vacancy superstructure of a bulk three-dimensional (3D) Ti2C and TiCycrystals at 700 °C ⩽T⩽ 1000 °C with subsequent transformation to disordered carbon vacancy cubic TiCyat higher temperatures (T> 1000 °C). We annealed Ti3C2TxMXene films made from the delaminated MXene single-flakes as well as the multi-layer MXene clay in a controlled environment through the use ofin situhot stage x-ray diffraction (XRD) paired with a 2D detector (XRD2) up to 1000 °C andex situannealing in a tube furnace and spark plasma sintering up to 1500 °C. Our XRD2analysis paired with cross-sectional scanning electron microscope imaging indicated the resulting nano-sized lamellar and micron-sized cubic grain morphology of the 3D crystals depend on the starting Ti3C2Txform. While annealing the multi-layer clay Ti3C2TxMXene creates TiCygrains with cubic and irregular morphology, the grains of 3D Ti2C and TiCyformed by annealing Ti3C2TxMXene single-flake films keep MXenes' lamellar morphology. The ultrathin lamellar nature of the 3D grains formed at temperatures >1000 °C can pave way for applications of MXenes as a stable carbide material 2D additive for high-temperature applications.