- Browse by Author
Browsing by Author "Katz, Douglas I."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Minimum Competency Recommendations for Programs That Provide Rehabilitation Services for Persons With Disorders of Consciousness: A Position Statement of the American Congress of Rehabilitation Medicine and the National Institute on Disability, Independent Living and Rehabilitation Research Traumatic Brain Injury Model Systems(Elsevier, 2020-02) Giacino, Joseph T.; Whyte, John; Nakase-Richardson, Risa; Katz, Douglas I.; Arciniegas, David B.; Blum, Sonja; Day, Kristin; Greenwald, Brian D.; Hammond, Flora M.; Pape, Theresa Bender; Rosenbaum, Amy; Seel, Ronald T.; Weintraub, Alan; Yablon, Stuart; Zafonte, Ross D.; Zasler, Nathan; Physical Medicine and Rehabilitation, School of MedicinePersons who have disorders of consciousness (DoC) require care from multidisciplinary teams with specialized training and expertise in management of the complex needs of this clinical population. The recent promulgation of practice guidelines for patients with prolonged DoC by the American Academy of Neurology, American Congress of Rehabilitation Medicine (ACRM), and National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) represents a major advance in the development of care standards in this area of brain injury rehabilitation. Implementation of these practice guidelines requires explication of the minimum competencies of clinical programs providing services to persons who have DoC. The Brain Injury Interdisciplinary Special Interest Group of the ACRM, in collaboration with the Disorders of Consciousness Special Interest Group of the NIDILRR-Traumatic Brain Injury Model Systems convened a multidisciplinary panel of experts to address this need through the present position statement. Content area-specific workgroups reviewed relevant peer-reviewed literature and drafted recommendations which were then evaluated by the expert panel using a modified Delphi voting process. The process yielded 21 recommendations on the structure and process of essential services required for effective DoC-focused rehabilitation, organized into 4 categories: diagnostic and prognostic assessment (4 recommendations), treatment (11 recommendations), transitioning care/long-term care needs (5 recommendations), and management of ethical issues (1 recommendation). With few exceptions, these recommendations focus on infrastructure requirements and operating procedures for the provision of DoC-focused neurorehabilitation services across subacute and postacute settings.Item National Institute of Neurological Disorders and Stroke Consensus Diagnostic Criteria for Traumatic Encephalopathy Syndrome(Wolters Kluwer, 2021) Katz, Douglas I.; Bernick, Charles; Dodick, David W.; Mez, Jesse; Mariani, Megan L.; Adler, Charles H.; Alosco, Michael L.; Balcer, Laura J.; Banks, Sarah J.; Barr, William B.; Brody, David L.; Cantu, Robert C.; Dams-O’Connor, Kristen; Geda, Yonas E.; Jordan, Barry D.; McAllister, Thomas W.; Peskind, Elaine R.; Petersen, Ronald C.; Wethe, Jennifer V.; Zafonte, Ross D.; Foley, Éimear M.; Babcock, Debra J.; Koroshetz, Walter J.; Tripodis, Yorghos; McKee, Ann C.; Shenton, Martha E.; Cummings, Jeffrey L.; Reiman, Eric M.; Stern, Robert A.; Psychiatry, School of MedicineObjective: To develop evidence-informed, expert consensus research diagnostic criteria for traumatic encephalopathy syndrome (TES), the clinical disorder associated with neuropathologically diagnosed chronic traumatic encephalopathy (CTE). Methods: A panel of 20 expert clinician-scientists in neurology, neuropsychology, psychiatry, neurosurgery, and physical medicine and rehabilitation, from 11 academic institutions, participated in a modified Delphi procedure to achieve consensus, initiated at the First National Institute of Neurological Disorders and Stroke Consensus Workshop to Define the Diagnostic Criteria for TES, April, 2019. Before consensus, panelists reviewed evidence from all published cases of CTE with neuropathologic confirmation, and they examined the predictive validity data on clinical features in relation to CTE pathology from a large clinicopathologic study (n = 298). Results: Consensus was achieved in 4 rounds of the Delphi procedure. Diagnosis of TES requires (1) substantial exposure to repetitive head impacts (RHIs) from contact sports, military service, or other causes; (2) core clinical features of cognitive impairment (in episodic memory and/or executive functioning) and/or neurobehavioral dysregulation; (3) a progressive course; and (4) that the clinical features are not fully accounted for by any other neurologic, psychiatric, or medical conditions. For those meeting criteria for TES, functional dependence is graded on 5 levels, ranging from independent to severe dementia. A provisional level of certainty for CTE pathology is determined based on specific RHI exposure thresholds, core clinical features, functional status, and additional supportive features, including delayed onset, motor signs, and psychiatric features. Conclusions: New consensus diagnostic criteria for TES were developed with a primary goal of facilitating future CTE research. These criteria will be revised as updated clinical and pathologic information and in vivo biomarkers become available.Item The Post-traumatic Confusional State: A Case Definition and Diagnostic Criteria(Elsevier, 2020) Sherer, Mark; Katz, Douglas I.; Bodien, Yelena G.; Arciniegas, David B.; Block, Cady; Blum, Sonja; Doiron, Matt; Frey, Kim; Giacino, Joseph T.; Graf, Min Jeong P.; Greenwald, Brian; Hammond, Flora M.; Kalmar, Kathleen; Kean, Jacob; Kraus, Marilyn F.; Nakase-Richardson, Risa; Pavawalla, Shital; Rosenbaum, Amy; Stuss, Donald T.; Yablon, Stuart A.; Physical Medicine and Rehabilitation, School of MedicineIn response to the need to better define the natural history of emerging consciousness after traumatic brain injury (TBI) and to better describe the characteristics of the condition commonly labeled Post-traumatic Amnesia, a case definition and diagnostic criteria for the Post- traumatic Confusional State (PTCS) were developed. This project was completed by the Confusion Workgroup of the American Congress of Rehabilitation Medicine Brain Injury Interdisciplinary Special Interest group. The case definition was informed by an exhaustive literature review and expert opinion of workgroup members from multiple disciplines. The workgroup reviewed 2,466 abstracts and extracted evidence from 44 articles. Consensus was reached through teleconferences, face-to-face meetings, and three rounds of modified Delphi voting. The case definition provides detailed description of PTCS (1) core neurobehavioral features, (2) associated neurobehavioral features, (3) functional implications, (4) exclusion criteria, (5) lower boundary, and (6) criteria for emergence. Core neurobehavioral features include disturbances of attention, orientation, and memory as well as excessive fluctuation. Associated neurobehavioral features include emotional and behavioral disturbances, sleep-wake cycle disturbance, delusions, perceptual disturbances and confabulation. The lower boundary distinguishes PTCS from the minimally conscious state while upper boundary is marked by significant improvement in the four core and five associated features. Key research goals are establishment of cut-offs on assessment instruments and determination of levels of behavioral function that distinguish persons in PTCS from those who have emerged to the period of continued recovery.Item Traumatic brain injury and cognitive resilience in the Framingham Heart Study(Wiley, 2025-01-09) Hwang, Phillip H.; Durape, Shruti; Price, Eden; Gurnani, Ashita S.; Ang, Ting Fang Alvin; Devine, Sherral A.; Choi, Seo-Eun; Lee, Michael L.; Scollard, Phoebe; Gibbons, Laura E.; Mukherjee, Shubhabrata; Trittschuh, Emily H.; Sherva, Richard; Dumitrescu, Logan C.; Hohman, Timothy J.; Saykin, Andrew J.; Crane, Paul K.; Tripodis, Yorghos; Alosco, Michael L.; Katz, Douglas I.; Dams-O'Connor, Kristen; Au, Rhoda; Farrer, Lindsay A.; Mez, Jesse; Radiology and Imaging Sciences, School of MedicineBackground: Some evidence supports an association between traumatic brain injury (TBI) and greater risk of dementia, but the role of cognitive resilience in this association is poorly understood. Method: 2,050 participants from the Framingham Heart Study Offspring cohort who were aged ≥60 year and had a plasma total tau (t‐tau) measure at Exam 8 (2005‐2008), and a neuropsychological (NP) exam visit within five years were included. Plasma t‐tau was measured using the Simoa assay (Quanterix). NP factor scores were previously derived for memory, language, and executive function using confirmatory factor analysis. Information on TBIs was collected by comprehensive review of medical records, health history updates, exams, and self‐report. TBI occurrence and severity were operationalized using modified ACRM & VA/DoD criteria, respectively. Cognitive resilience was operationalized using a residual approach by regressing each NP factor score on the plasma t‐tau measure, adjusting for age at Exam 8, sex, education, time from blood draw, and APOE ε4 genotype. The adjusted residuals were then regressed on history of TBI (yes versus no), and severity of TBI (moderate‐to‐severe versus mild versus none). Result: The sample was, on average, 67 years of age at Exam 8, 54% female, and college educated. No differences were observed in plasma t‐tau levels between those with and without TBI. Having a history of TBI was significantly associated with a reduction in resilience in executive function (β: ‐0.110; 95% CI: ‐0.175, ‐0.044; p: 0.001) as compared to not having a history of TBI. No significant associations were observed between history of TBI and resilience in memory or language. Greater TBI severity was significantly associated with worse resilience in executive function in a dose‐response manner (Ptrend: <0.001), with the association being strongest in the moderate‐to‐severe TBI group (β: ‐0.209; 95% CI: ‐0.340, ‐0.078; p: 0.002) followed by the mild TBI group (β: ‐0.082; 95% CI: ‐0.155, ‐0.010; p: 0.026). Conclusion: Having a TBI was associated with worse resilience to neurodegeneration in executive function, and most strongly among individuals with moderate‐to‐severe TBI. These results suggest that having a TBI may increase vulnerability to late‐life executive dysfunction after accounting for a primary neurodegenerative disease process.