- Browse by Author
Browsing by Author "Katsara, Maria-Alexandra"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Evaluation of supervised machine-learning methods for predicting appearance traits from DNA(Elsevier, 2021) Katsara, Maria-Alexandra; Branicki, Wojciech; Walsh, Susan; Kayser, Manfred; Nothnagel, Michael; VISAGE Consortium; Biology, School of ScienceThe prediction of human externally visible characteristics (EVCs) based solely on DNA information has become an established approach in forensic and anthropological genetics in recent years. While for a large set of EVCs, predictive models have already been established using multinomial logistic regression (MLR), the prediction performances of other possible classification methods have not been thoroughly investigated thus far. Motivated by the question to identify a potential classifier that outperforms these specific trait models, we conducted a systematic comparison between the widely used MLR and three popular machine learning (ML) classifiers, namely support vector machines (SVM), random forest (RF) and artificial neural networks (ANN), that have shown good performance outside EVC prediction. As examples, we used eye, hair and skin color categories as phenotypes and genotypes based on the previously established IrisPlex, HIrisPlex, and HIrisPlex-S DNA markers. We compared and assessed the performances of each of the four methods, complemented by detailed hyperparameter tuning that was applied to some of the methods in order to maximize their performance. Overall, we observed that all four classification methods showed rather similar performance, with no method being substantially superior to the others for any of the traits, although performances varied slightly across the different traits and more so across the trait categories. Hence, based on our findings, none of the ML methods applied here provide any advantage on appearance prediction, at least when it comes to the categorical pigmentation traits and the selected DNA markers used here.Item Testing the impact of trait prevalence priors in Bayesian-based genetic prediction modeling of human appearance traits(Elsevier, 2021-01) Katsara, Maria-Alexandra; Branicki, Wojciech; Pośpiech, Ewelina; Hysi, Pirro; Walsh, Susan; Kayser, Manfred; Nothnagel, Michael; VISAGE Consortium; Biology, School of ScienceThe prediction of appearance traits by use of solely genetic information has become an established approach and a number of statistical prediction models have already been developed for this purpose. However, given limited knowledge on appearance genetics, currently available models are incomplete and do not include all causal genetic variants as predictors. Therefore such prediction models may benefit from the inclusion of additional information that acts as a proxy for this unknown genetic background. Use of priors, possibly informed by trait category prevalence values in biogeographic ancestry groups, in a Bayesian framework may thus improve the prediction accuracy of previously predicted externally visible characteristics, but has not been investigated as of yet. In this study, we assessed the impact of using trait prevalence-informed priors on the prediction performance in Bayesian models for eye, hair and skin color as well as hair structure and freckles in comparison to the respective prior-free models. Those prior-free models were either similarly defined either very close to the already established ones by using a reduced predictive marker set. However, these differences in the number of the predictive markers should not affect significantly our main outcomes. We observed that such priors often had a strong effect on the prediction performance, but to varying degrees between different traits and also different trait categories, with some categories barely showing an effect. While we found potential for improving the prediction accuracy of many of the appearance trait categories tested by using priors, our analyses also showed that misspecification of those prior values often severely diminished the accuracy compared to the respective prior-free approach. This emphasizes the importance of accurate specification of prevalence-informed priors in Bayesian prediction modeling of appearance traits. However, the existing literature knowledge on spatial prevalence is sparse for most appearance traits, including those investigated here. Due to the limitations in appearance trait prevalence knowledge, our results render the use of trait prevalence-informed priors in DNA-based appearance trait prediction currently infeasible.