- Browse by Author
Browsing by Author "Kassab, Ghassan S."
Now showing 1 - 10 of 17
Results Per Page
Sort Options
Item 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells.(PLOS, 2016) Luo, Tong; Chen, Huan; Kassab, Ghassan S.; Department of Biomedical Engineering, Purdue School of Engineering and Technology, IUPUIAims: The 3D geometry of individual vascular smooth muscle cells (VSMCs), which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation. Methods and Results: A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI) selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell’s initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations) was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9μm, 4.6±0.6μm and 6.2±1.8μm (mean±SD). In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle) was found to be 8±7.6° with median as 5.7°. Conclusions: A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function.Item Biaxial deformation of collagen and elastin fibers in coronary adventitia(American Physiological Society (APS), 2013-12-01) Chen, Huan; Slipchenko, Mikhail N.; Liu, Yi; Zhao, Xuefeng; Cheng, Ji-Xin; Lanir, Yoram; Kassab, Ghassan S.; Department of Biomedical Engineering, Purdue School of Engineering and Technology, IUPUIThe microstructural deformation-mechanical loading relation of the blood vessel wall is essential for understanding the overall mechanical behavior of vascular tissue in health and disease. We employed simultaneous mechanical loading-imaging to quantify in situ deformation of individual collagen and elastin fibers on unstained fresh porcine coronary adventitia under a combination of vessel inflation and axial extension loading. Specifically, the specimens were imaged under biaxial loads to study microscopic deformation-loading behavior of fibers in conjunction with morphometric measurements at the zero-stress state. Collagen fibers largely orientate in the longitudinal direction, while elastin fibers have major orientation parallel to collagen, but with additional orientation angles in each sublayer of the adventitia. With an increase of biaxial load, collagen fibers were uniformly stretched to the loading direction, while elastin fibers gradually formed a network in sublayers, which strongly depended on the initial arrangement. The waviness of collagen decreased more rapidly at a circumferential stretch ratio of λθ = 1.0 than at λθ = 1.5, while most collagen became straightened at λθ = 1.8. These microscopic deformations imply that the longitudinally stiffer adventitia is a direct result of initial fiber alignment, and the overall mechanical behavior of the tissue is highly dependent on the corresponding microscopic deformation of fibers. The microstructural deformation-loading relation will serve as a foundation for micromechanical models of the vessel wall.Item Compensatory enlargement of Ossabaw miniature swine coronary arteries in diffuse atherosclerosis(Elsevier, 2015-03) Choy, Jenny S.; Luo, Tong; Huo, Yunlong; Wischgoll, Thomas; Schultz, Kyle; Teague, Shawn D.; Sturek, Michael; Kassab, Ghassan S.; Department of Biomedical Engineering, School of Engineering and TechnologyStudies in human and non-human primates have confirmed the compensatory enlargement or positive remodeling (Glagov phenomenon) of coronary vessels in the presence of focal stenosis. To our knowledge, this is the first study to document arterial enlargement in a metabolic syndrome animal model with diffuse coronary artery disease (DCAD) in the absence of severe focal stenosis. Two different groups of Ossabaw miniature pigs were fed a high fat atherogenic diet for 4 months (Group I) and 12 months (Group II), respectively. Group I (6 pigs) underwent contrast enhanced computed tomographic angiography (CCTA) and intravascular ultrasound (IVUS) at baseline and after 4 months of high fat diet, whereas Group II (7 pigs) underwent only IVUS at 12 months of high fat diet. IVUS measurements of the left anterior descending (LAD), left circumflex (LCX) and right coronary (RCA) arteries in Group I showed an average increase in their lumen cross-sectional areas (CSA) of 25.8%, 11.4%, and 43.4%, respectively, as compared to baseline. The lumen CSA values of LAD in Group II were found to be between the baseline and 4 month values in Group I. IVUS and CCTA measurements showed a similar trend and positive correlation. Fractional flow reserve (FFR) was 0.91 ± 0.07 at baseline and 0.93 ± 0.05 at 4 months with only 2.2%, 1.6% and 1% stenosis in the LAD, LCX and RCA, respectively. The relation between percent stenosis and lumen CSA shows a classical Glagov phenomenon in this animal model of DCAD.Item Constructal law of vascular trees for facilitation of flow(PLoS, 2014-12-31) Razavi, Mohammad S.; Shirani, Ebrahim; Salimpour, Mohammad Reza; Kassab, Ghassan S.; Department of Biomedical Engineering, School of Engineering and TechnologyDiverse tree structures such as blood vessels, branches of a tree and river basins exist in nature. The constructal law states that the evolution of flow structures in nature has a tendency to facilitate flow. This study suggests a theoretical basis for evaluation of flow facilitation within vascular structure from the perspective of evolution. A novel evolution parameter (Ev) is proposed to quantify the flow capacity of vascular structures. Ev is defined as the ratio of the flow conductance of an evolving structure (configuration with imperfection) to the flow conductance of structure with least imperfection. Attaining higher Ev enables the structure to expedite flow circulation with less energy dissipation. For both Newtonian and non-Newtonian fluids, the evolution parameter was developed as a function of geometrical shape factors in laminar and turbulent fully developed flows. It was found that the non-Newtonian or Newtonian behavior of fluid as well as flow behavior such as laminar or turbulent behavior affects the evolution parameter. Using measured vascular morphometric data of various organs and species, the evolution parameter was calculated. The evolution parameter of the tree structures in biological systems was found to be in the range of 0.95 to 1. The conclusion is that various organs in various species have high capacity to facilitate flow within their respective vascular structures.Item Critical contribution of KV1 channels to the regulation of coronary blood flow(Springer, 2016-09) Goodwill, Adam G.; Noblet, Jillian N.; Sassoon, Daniel; Fu, Lijuan; Kassab, Ghassan S.; Schepers, Luke; Herring, B. Paul; Rottgen, Trey S.; Tune, Johnathan D.; Dick, Gregory M.; Cellular and Integrative Physiology, School of MedicineIon channels in smooth muscle control coronary vascular tone, but the mechanisms require further investigation. The purpose of this study was to evaluate the functional role of KV1 channels on porcine coronary blood flow by using the selective antagonist correolide. KV1 channel gene transcripts were found in porcine coronary arteries, with KCNA5 (encoding KV1.5) being most abundant (P<0.001). Immunohistochemical staining demonstrated KV1.5 protein in the vascular smooth muscle layer of both porcine and human coronary arteries, including microvessels. Whole-cell patch clamp experiments demonstrated significant correolide-sensitive (1–10 µM) current in coronary smooth muscle. In vivo studies included direct intracoronary infusion of vehicle or correolide into a pressure-clamped left anterior descending artery of healthy swine (n=5 in each group) with simultaneous measurement of coronary blood flow. Intracoronary correolide (~0.3–3 µM targeted plasma concentration) had no effect on heart rate or systemic pressure, but reduced coronary blood flow in a dose-dependent manner (P<0.05). Dobutamine (0.3–10 µg/kg/min) elicited coronary metabolic vasodilation and intracoronary correolide (3 µM) significantly reduced coronary blood flow at any given level of myocardial oxygen consumption (P<0.001). Coronary artery occlusions (15 s) elicited reactive hyperemia and correolide (3 µM) reduced the flow volume repayment by approximately 30% (P<0.05). Taken together, these data support a major role for KV1 channels in modulating baseline coronary vascular tone and perhaps vasodilation in response to increased metabolism and transient ischemia.Item Distension-Induced Gastric Contraction is Attenuated in an Experimental Model of Gastric Restraint(Springer Verlag, 2010-08-13) Lu, Xiao; Guo, Xiaomei; Mattar, Samer G.; Navia, Jose A.; Kassab, Ghassan S.; Biomedical Engineering, School of Engineering and TechnologyBackground Gastric distension has important implications for motility and satiety. The hypothesis of this study was that distension affects the amplitude and duration of gastric contraction and that these parameters are largely mediated by efferent vagus stimulation. Methods A novel isovolumic myograph was introduced to test these hypotheses. The isovolumic myograph isolates the stomach and records the pressure generated by the gastric contraction under isovolumic conditions. Accordingly, the phasic changes of gastric contractility can be documented. A group of 12 rats were used under in vivo conditions and isolated ex vivo conditions and with two different gastric restraints (small and large) to determine the effect of degree of restraint. Results The comparison of the in vivo and ex vivo contractility provided information on the efferent vagus mediation of gastric contraction, i.e., the in vivo amplitude and duration reached maximum of 12.6±2.7 mmHg and 19.8±5.6 s in contrast to maximum of 5.7±0.9 mmHg and 7.3±1.3 s in ex vivo amplitude and duration, respectively. The comparison of gastric restraint and control groups highlights the role of distension on in vivo gastric contractility. The limitation of gastric distension by restraint drastically reduced the maximal amplitude to below 2.9±0.2 mmHg. Conclusions The results show that distension-induced gastric contractility is regulated by both central nervous system and local mechanisms with the former being more substantial. Furthermore, the gastric restraint significantly attenuates gastric contractility (decreased amplitude and shortened duration of contraction) which is mediated by the efferent vagus activation. These findings have important implications for gastric motility and physiology and may improve our understanding of satiety.Item Endothelial actin depolymerization mediates NADPH oxidase-superoxide production during flow reversal(American Physiological Society (APS), 2014-01-01) Choy, Jenny S.; Lu, Xiao; Yang, Junrong; Zhang, Zhen-Du; Kassab, Ghassan S.; Department of Biomedical Engineering, Purdue School of Engineering and Technology, IUPUISlow moving blood flow and changes in flow direction, e.g., negative wall shear stress, can cause increased superoxide (O2·−) production in vascular endothelial cells. The mechanism by which shear stress increases O2·− production, however, is not well established. We tested the hypothesis that actin depolymerization, which occurs during flow reversal, mediates O2·− production in vascular endothelial cells via NADPH oxidase, and more specifically, the subunit p47phox. Using a swine model, we created complete blood flow reversal in one carotid artery, while the contralateral vessel maintained forward blood flow as control. We measured actin depolymerization, NADPH oxidase activity, and reactive oxygen species (ROS) production in the presence of various inhibitors. Flow reversal was found to induce actin depolymerization and a 3.9 ± 1.0-fold increase in ROS production as compared with forward flow. NADPH oxidase activity was 1.4 ± 0.2 times higher in vessel segments subjected to reversed blood flow when measured by a direct enzyme assay. The NADPH oxidase subunits gp91phox (Nox2) and p47phox content in the vessels remained unchanged after 4 h of flow reversal. In contrast, p47phox phosphorylation was increased in vessels with reversed flow. The response caused by reversed flow was reduced by in vivo treatment with jasplakinolide, an actin stabilizer (only a 1.7 ± 0.3-fold increase). Apocynin (an antioxidant) prevented reversed flow-induced ROS production when the animals were treated in vivo. Cytochalasin D mimicked actin depolymerization in vitro and caused a 5.2 ± 3.0-fold increase in ROS production. These findings suggest that actin filaments play an important role in negative shear stress-induced ROS production by potentiating NADPH oxidase activity, and more specifically, the p47phox subunit in vascular endothelium.Item Endothelial barrier dysfunction in diabetic conduit arteries: a novel method to quantify filtration(American Physiological Society (APS), 2013-02-01) Lu, Xiao; Huxley, Virginia H.; Kassab, Ghassan S.; Department of Biomedical Engineering, Purdue School of Engineering and Technology, IUPUIThe endothelial barrier plays an important role in atherosclerosis, hyperglycemia, and hypercholesterolemia. In the present study, an accurate, reproducible, and user-friendly method was used to further understand endothelial barrier function of conduit arteries. An isovolumic method was used to measure the hydraulic conductivity (Lp) of the intact vessel wall and medial-adventitial layer. Normal arterial segments with diameters from 0.2 to 5.5 mm were used to validate the method, and femoral arteries of diabetic rats were studied as an example of pathological specimens. Various arterial segments confirmed that the volume flux of water per unit surface area was linearly related to intraluminal pressure, as confirmed in microvessels. Lp of the intact wall varied from 3.5 to 22.1 × 10−7 cm·s−1·cmH2O−1 over the pressure range of 7–180 mmHg. Over the same pressure range, Lp of the endothelial barrier changed from 4.4 to 25.1 × 10−7 cm·s−1·cmH2O−1. During perfusion with albumin-free solution, Lp of rat femoral arteries increased from 6.1 to 13.2 × 10−7 cm·s−1·cmH2O−1 over the pressure range of 10–180 mmHg. Hyperglycemia increased Lp of the femoral artery in diabetic rats from 2.9 to 5.5 × 10−7 cm·s−1·cmH2O−1 over the pressure range of 20–135 mmHg. In conclusion, the Lp of a conduit artery can be accurately and reproducibly measured using a novel isovolumic method, which in diabetic rats is hyperpermeable. This is likely due to disruption of the endothelial glycocalyx.Item Failure of physiologic transformation of spiral arteries, endothelial and trophoblast cell activation, and acute atherosis in the basal plate of the placenta(Elsevier, 2017-03) Labarrere, Carlos A.; DiCarlo, Hector L.; Bammerlin, Elaine; Hardin, James W.; Kim, Yeon Mee; Chaemsaithong, Piya; Haas, David M.; Kassab, Ghassan S.; Romero, Roberto; Obstetrics and Gynecology, School of MedicineBACKGROUND: Failure of physiologic transformation of spiral arteries has been reported in preeclampsia, fetal growth restriction, fetal death, and spontaneous preterm labor with intact or ruptured membranes. Spiral arteries with failure of physiologic transformation are prone to develop atherosclerotic-like lesions of atherosis. There are striking parallels between preeclampsia and atherosclerotic disease, and between lesions of atherosis and atherosclerosis. Endothelial activation, identified by intercellular adhesion molecule-1 expression, is present in atherosclerotic-like lesions of heart transplantation, and is considered a manifestation of rejection. Similarly, endothelial activation/dysfunction has been implicated in the pathophysiology of atherosclerosis and preeclampsia. Intercellular adhesion molecule-1-overexpressing-activated endothelial cells are more resistant to trophoblast displacement than nonactivated endothelium, and may contribute to shallow spiral artery trophoblastic invasion in obstetrical syndromes having failure of physiologic transformation. OBJECTIVE: We sought to determine whether failure of spiral artery physiologic transformation was associated with activation of interstitial extravillous trophoblasts and/or spiral artery endothelium and presence of acute atherosis in the placental basal plate. STUDY DESIGN: A cross-sectional study of 123 placentas (19-42 weeks' gestation) obtained from normal pregnancies (n = 22), preterm prelabor rupture of membranes (n = 26), preterm labor (n = 23), preeclampsia (n = 27), intrauterine fetal death (n = 15), and small for gestational age (n = 10) was performed. Failure of spiral artery physiologic transformation and presence of cell activation was determined using immunohistochemistry of placental basal plates containing a median of 4 (minimum: 1; maximum: 9) vessels per placenta. Endothelial/trophoblast cell activation was defined by the expression of intercellular adhesion molecule-1. Investigators examining microscopic sections were blinded to clinical diagnosis. Pairwise comparisons among placenta groups were performed with Fisher exact test and Wilcoxon rank sum test using a Bonferroni-adjusted level of significance (.025). RESULTS: We found that 87% (94/108) of placentas having spiral arteries with failure of physiologic transformation (actin-positive and cytokeratin-negative) in the basal plate, and 0% (0/15) of placentas having only spiral arteries with complete physiologic transformation (cytokeratin-positive and actin-negative), had arterial endothelial and/or interstitial extravillous trophoblasts reactive with the intercellular adhesion molecule-1 activation marker (P < .001). A significant correlation (R2 = 0.84) was found between expression of spiral artery endothelial and interstitial extravillous trophoblast intercellular adhesion molecule-1 (P < .001) in activated placentas. Lesions of atherosis were found in 31.9% (30/94) of placentas with complete and/or partial failure of physiologic transformation of spiral arteries that were intercellular adhesion molecule-1-positive, in none of the 14 placentas with failure of physiologic transformation that were intercellular adhesion molecule-1-negative, and in none of the 15 placentas with complete spiral artery physiologic transformation without failure (P = .001). All placentas (30/30, 100%) with atherosis were identified in placentas having concomitant spiral artery endothelial and interstitial extravillous trophoblast activation. CONCLUSION: Failure of spiral artery physiologic transformation in the placental basal plate is associated with interstitial extravillous trophoblast and arterial endothelial activation along with increased frequency of spiral artery atherosis. These findings may be used to improve the characterization of different disorders of the placental bed such as in refining the existing tools for the early prediction of risk for preterm, preeclamptic, and other abnormal pregnancies.Item Influence of Peri-duodenal Non-constrictive Cuff on the Body Weight of Rats(Springer US, 2015-02) Lu, Xiao; Mattar, Samer G.; Kassab, Ghassan S.; Department of Biomedical Engineering, School of Engineering and TechnologyBackground Weight loss has been found to improve or re- solve cardiovascular comorbidities. There is a significant need for reversible device approaches to weight loss. Methods Non-constrictive cuff (NCC) is made of implantable silicone rubber with an internal diameter greater than the duodenum. Ten or 11 NCC were individually mounted along the duodenum from the pyloric sphincter toward the distal duodenum to cover ~22 mm in the length. Twelve Wistar rats were implanted with NCC, and six served as sham, and both groups were observed over 4 months. Six rats with implant had their NCC removed and were observed for additional 4weeks. Results The food intake decreased from 40.1 to 28.1 g/day after 4 months of NCC implant. The body weight gain decreased from 1.76 to 0.46 g/day after 4 months of NCC implant. The fasting glucose decreased from 87.7 to 75.3 mg/ dl at terminal day. The duodenal muscle layer covered by the NCC increased from 0.133 to 0.334 mm. After 4 weeks of NCC removal, the food intake, body weight gain, and fasting glucose recovered to 36.2, 2.51 g/day, and 83.9 mg/dl. The duodenal muscle layer covered by the NCC decreased to 0.217 mm. Conclusion The NCC implant placed on the proximal duode- num is safe in rats for a 4-month period. The efficacy of the NCC implant is significant for decrease in food intake, body weight gain, and fasting glucose in a normal rat model. The removal of NCC implant confirmed a cause-effect relation with food intake and hence body weight.