- Browse by Author
Browsing by Author "Karnik, Shreyas"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item CAMP: a useful resource for research on antimicrobial peptides(Oxford University Press, 2009-11-18) Thomas, Shaini; Karnik, Shreyas; Barai, Ram Shankar; Jayaraman, V. K.; Idicula-Thomas, Susan; BioHealth Informatics, School of Informatics and ComputingAntimicrobial peptides (AMPs) are gaining popularity as better substitute to antibiotics. These peptides are shown to be active against several bacteria, fungi, viruses, protozoa and cancerous cells. Understanding the role of primary structure of AMPs in their specificity and activity is essential for their rational design as drugs. Collection of Anti-Microbial Peptides (CAMP) is a free online database that has been developed for advancement of the present understanding on antimicrobial peptides. It is manually curated and currently holds 3782 antimicrobial sequences. These sequences are divided into experimentally validated (patents and non-patents: 2766) and predicted (1016) datasets based on their reference literature. Information like source organism, activity (MIC values), reference literature, target and non-target organisms of AMPs are captured in the database. The experimentally validated dataset has been further used to develop prediction tools for AMPs based on the machine learning algorithms like Random Forests (RF), Support Vector Machines (SVM) and Discriminant Analysis (DA). The prediction models gave accuracies of 93.2% (RF), 91.5% (SVM) and 87.5% (DA) on the test datasets. The prediction and sequence analysis tools, including BLAST, are integrated in the database. CAMP will be a useful database for study of sequence-activity and -specificity relationships in AMPs. CAMP is freely available at http://www.bicnirrh.res.in/antimicrobial.Item Mining Biomedical Literature to Extract Pharmacokinetic Drug-Drug Interactions(2014-02-03) Karnik, Shreyas; Li, Lang; Liu, Yunlong; Liu, XiaowenPolypharmacy is a general clinical practice, there is a high chance that multiple administered drugs will interfere with each other, such phenomenon is called drug-drug interaction (DDI). DDI occurs when drugs administered change each other's pharmacokinetic (PK) or pharmacodynamic (PD) response. DDIs in many ways affect the overall effectiveness of the drug or at some times pose a risk of serious side effects to the patients thus, it becomes very challenging to for the successful drug development and clinical patient care. Biomedical literature is rich source for in-vitro and in-vivo DDI reports and there is growing need to automated methods to extract the DDI related information from unstructured text. In this work we present an ontology (PK ontology), which defines annotation guidelines for annotation of PK DDI studies. Using the ontology we have put together a corpora of PK DDI studies, which serves as excellent resource for training machine learning, based DDI extraction algorithms. Finally we demonstrate the use of PK ontology and corpora for extracting PK DDIs from biomedical literature using machine learning algorithms.