- Browse by Author
Browsing by Author "Kantarci, Kejal"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Blood-based gene and co-expression network levels are associated with AD/MCI diagnosis and cognitive phenotypes(Wiley, 2025-01-09) Chen, Xuan; Reddy, Joseph S.; Wang, Xue; Quicksall, Zachary; Nguyen, Thuy; Reyes, Denise A.; Graff-Radford, Jonathan; Jack, Clifford R., Jr.; Lowe, Val J.; Knopman, David S.; Petersen, Ronald C.; Kantarci, Kejal; Nho, Kwangsik; Allen, Mariet; Carrasquillo, Minerva M.; Saykin, Andrew J.; Ertekin-Taner, Nilüfer; Radiology and Imaging Sciences, School of MedicineBackground: Alzheimer’s disease (AD) patients have decline in cognitive domains including memory, language, visuospatial, and/or executive function and brain pathology including amyloid‐β and tau deposition, neurodegeneration, and frequent vascular co‐pathologies detectable by neuroimaging and/or cerebrospinal fluid biomarkers. However, molecular disease mechanisms are complex and heterogeneous. It is necessary to develop cost‐effective blood‐based biomarkers reflecting brain molecular perturbations in AD. We identified blood‐based gene and co‐expression network level changes associated with AD/mild cognitive impairment (MCI) diagnosis and AD‐related phenotypes. Method: We performed differential gene expression and weighted gene co‐expression network analysis, followed by meta‐analysis, using blood transcriptome data of 391 participants from the Mayo Clinic Study of Aging and 654 participants from the Alzheimer's Disease Neuroimaging Initiative. The neuroimaging phenotypes include microhemorrhages, infarcts, amyloid burden, hippocampal volume, and white matter hyperintensities. The cognitive phenotypes include standardized cognitive subtest scores and composite scores for memory, language, visuospatial, and executive function. Result: Five out of 18 modules(M) are significantly associated with diagnosis or cognition (FDR‐adjusted p<0.05). M1 and M15 both positively associates with memory, M1 positively associated with language and M15 with visuospatial function. M1 and M15 are enriched in differentially expressed genes (DEGs) associated with language and executive function, respectively. M2 negatively associates with logical memory delayed recall scores(LMDR), memory, executive, and language functions and is enriched in DEGs for these phenotypes. M8 negatively associates with memory, language and executive functions and is enriched in DEGs for memory and language. M12 positively associates with LMDR. M1 and M15 are down‐regulated while M2 and M8 are up‐regulated in AD/MCI patients. Cell‐type enrichment analysis showed M2 is enriched in monocytes and neutrophils; M8 in monocytes; M15 in B cells (FDR <0.05). Gene ontology terms enriched in these modules indicated broad consistency with their cell types. Conclusion: We identified five modules significantly associated with AD/MCI or cognitive phenotypes using blood transcriptome data. These findings nominate blood transcriptome changes and their enriched biological processes as potential pathomechanisms in cognitive decline and AD/MCI development. We aim to investigate these blood transcripts as potential biomarkers for AD or AD‐related phenotypes and therapeutic targets through additional replication and experimental validation studies.Item Brain volumetric deficits in MAPT mutation carriers: a multisite study(Wiley, 2021) Chu, Stephanie A.; Flagan, Taru M.; Staffaroni, Adam M.; Jiskoot, Lize C.; Deng, Jersey; Spina, Salvatore; Zhang, Liwen; Sturm, Virginia E.; Yokoyama, Jennifer S.; Seeley, William W.; Papma, Janne M.; Geschwind, Dan H.; Rosen, Howard J.; Boeve, Bradley F.; Boxer, Adam L.; Heuer, Hilary W.; Forsberg, Leah K.; Brushaber, Danielle E.; Grossman, Murray; Coppola, Giovanni; Dickerson, Bradford C.; Bordelon, Yvette M.; Faber, Kelley; Feldman, Howard H.; Fields, Julie A.; Fong, Jamie C.; Foroud, Tatiana; Gavrilova, Ralitza H.; Ghoshal, Nupur; Graff-Radford, Neill R.; Hsiung, Ging-Yuek Robin; Huey, Edward D.; Irwin, David J.; Kantarci, Kejal; Kaufer, Daniel I.; Karydas, Anna M.; Knopman, David S.; Kornak, John; Kramer, Joel H.; Kukull, Walter A.; Lapid, Maria I.; Litvan, Irene; Mackenzie, Ian R. A.; Mendez, Mario F.; Miller, Bruce L.; Onyike, Chiadi U.; Pantelyat, Alexander Y.; Rademakers, Rosa; Ramos, Eliana Marisa; Roberson, Erik D.; Tartaglia, Maria Carmela; Tatton, Nadine A.; Toga, Arthur W.; Vetor, Ashley; Weintraub, Sandra; Wong, Bonnie; Wszolek, Zbigniew K.; ARTFL/LEFFTDS Consortium; Van Swieten, John C.; Lee, Suzee E.; Medical and Molecular Genetics, School of MedicineObjective: MAPT mutations typically cause behavioral variant frontotemporal dementia with or without parkinsonism. Previous studies have shown that symptomatic MAPT mutation carriers have frontotemporal atrophy, yet studies have shown mixed results as to whether presymptomatic carriers have low gray matter volumes. To elucidate whether presymptomatic carriers have lower structural brain volumes within regions atrophied during the symptomatic phase, we studied a large cohort of MAPT mutation carriers using a voxelwise approach. Methods: We studied 22 symptomatic carriers (age 54.7 ± 9.1, 13 female) and 43 presymptomatic carriers (age 39.2 ± 10.4, 21 female). Symptomatic carriers' clinical syndromes included: behavioral variant frontotemporal dementia (18), an amnestic dementia syndrome (2), Parkinson's disease (1), and mild cognitive impairment (1). We performed voxel-based morphometry on T1 images and assessed brain volumetrics by clinical subgroup, age, and mutation subtype. Results: Symptomatic carriers showed gray matter atrophy in bilateral frontotemporal cortex, insula, and striatum, and white matter atrophy in bilateral corpus callosum and uncinate fasciculus. Approximately 20% of presymptomatic carriers had low gray matter volumes in bilateral hippocampus, amygdala, and lateral temporal cortex. Within these regions, low gray matter volumes emerged in a subset of presymptomatic carriers as early as their thirties. Low white matter volumes arose infrequently among presymptomatic carriers. Interpretation: A subset of presymptomatic MAPT mutation carriers showed low volumes in mesial temporal lobe, the region ubiquitously atrophied in all symptomatic carriers. With each decade of age, an increasing percentage of presymptomatic carriers showed low mesial temporal volume, suggestive of early neurodegeneration.Item Discovery of Genes Underlying Cognitive Resilience in Individuals Predisposed to Alzheimer's Disease Risk(Wiley, 2025-01-09) Tsai, Wei; McNiff, Caitlin E.; Reddy, Joseph S.; Wang, Xue; Quicksall, Zachary; Nho, Kwangsik; Dunn, Amy R.; Allen, Mariet; Heckman, Michael G.; Ren, Yingxue; Zhao, Na; Kantarci, Kejal; Mielke, Michelle M.; Petersen, Ronald C.; Kaczorowski, Catherine C.; Carrasquillo, Minerva M.; Saykin, Andrew J.; Ertekin-Taner, Nilüfer; Radiology and Imaging Sciences, School of MedicineBackground: Two main risk factors of Alzheimer’s disease (AD) are aging and APOE‐ε4. However, some individuals remain cognitively normal despite having these risk factors. They are considered “cognitively resilient”. This study aimed to identify molecular factors that confer cognitive resilience in APOE‐ε4 carriers ≥ 80 years of age and may serve as biomarkers. Method: We applied weighted gene co‐expression network analysis (WGCNA) to generate consensus co‐expression networks from blood of participants in two antemortem cohorts, the Mayo Clinic Study of Aging (MCSA, n=105), and the Alzheimer’s Disease Neuroimaging Initiative (ADNI, n=91), using RNA‐sequencing and microarray data, respectively. We associated these networks with resilience (resilient vs non‐resilient), cognitive endophenotypes and hippocampal volume. Preservation between consensus networks from blood and those derived from postmortem brain tissues of AD and control donors from AMP‐AD (n=1174) was evaluated. We validated the human findings in four AD mouse models. Finally, machine learning models were utilized to discriminate cases (AD+mild cognitive impairment (MCI)) from controls in MCSA, ADNI and ANMerge antemortem cohorts. Result: Four consensus networks were significantly correlated with a memory phenotype (logical memory delayed recall=LMDR) and hippocampal volume in both MCSA and ADNI. Among these, blood expression module M3 was most preserved with the brain transcriptome. M3 was enriched with NDUF hub genes that are involved in the mitochondrial respiratory chain. Expression levels of M3 and many blood NDUFs had significant associations with better LMDR and hippocampal volume. In brain, NDUFs were upregulated in controls compared to AD, and their expression levels were associated with better global cognition and decreased AD neuropathology. Many NDUFs were significantly downregulated in the hippocampus or cortex of AD mice compared to wild‐types. Lastly, models that included blood NDUFs improved diagnostic accuracy of AD+MCI compared to models that only included demographic and risk variables (age, sex, APOE‐ε4) in MCSA, ADNI and ANMerge. In MCSA and ADNI, adding NDUFs’ expression to models that included established blood biomarkers (Aβ42/40, ptau181, NFL) further improved diagnostic accuracy. Conclusion: Our results suggest that mitochondrial NDUFs are centrally‐linked peripheral molecular signatures that may be resilience factors against AD and serve as both therapeutic targets and novel diagnostic biomarkers.Item Functional connectivity associations with markers of disease progression in GRN mutation carriers(Wiley, 2025-01-03) Flagan, Taru M.; Chu, Stephanie A.; Häkkinen, Suvi; Zhang, Liwen; McFall, David; Heller, Carolin; Rohrer, Jonathan D.; Brown, Jesse A.; Lee, Alex Jihun; Fernhoff, Kristen; Pasquini, Lorenzo; Mandelli, Maria Luisa; Gorno Tempini, Maria Luisa; Yokoyama, Jennifer S.; Sturm, Virginia; Appleby, Brian; Dickerson, Brad C.; Domoto-Reilly, Kimiko; Foroud, Tatiana M.; Geschwind, Daniel H.; Ghoshal, Nupur; Graff-Radford, Neill R.; Grossman, Murray; Hsiung, Ging-Yuek Robin; Huang, Eric J.; Huey, Edward D.; Kantarci, Kejal; Karydas, Anna M.; Kaufer, Daniel; Knopman, David S.; Litvan, Irene; MacKenzie, Ian R.; Mendez, Mario F.; Onyike, Chiadi U.; Petrucelli, Leonard; Ramos, Eliana Marisa; Roberson, Erik D.; Rojas, Julio C.; Tartaglia, Maria Carmela; Toga, Arthur W.; Weintraub, Sandra; Forsberg, Leah K.; Heuer, Hilary W.; Boeve, Brad F.; Boxer, Adam L.; Rosen, Howard J.; Miller, Bruce L.; Moreno, Fermin; Seeley, William W.; Lee, Suzee E.; ARTFL/LEFFTDS Consortia; Medicine, School of MedicineBackground: Autosomal dominant progranulin (GRN) mutations are a common genetic cause of frontotemporal lobar degeneration. Though clinical trials for GRN‐related therapies are underway, there is an unmet need for biomarkers that can predict symptom onset and track disease progression. We previously showed that presymptomatic GRN carriers exhibit thalamocortical hyperconnectivity that increases with age when they are presumably closer to symptom onset. However, whether hyperconnectivity arises concomitantly with markers of neurodegeneration remains unclear. Method: Utilizing T1 and task‐free functional magnetic resonance imaging (tf‐fMRI) from 49 presymptomatic and 26 symptomatic GRN mutation carriers, we determined the relationships between functional connectivity as measured by voxel‐wise whole brain degree and GRN‐relevant markers of disease progression, which included plasma neurofilament light chain (NfL) concentrations, CSF complement C1q and C3b protein levels, grey matter atrophy, and OCD symptom severity. Result: NfL concentrations were associated with frontotemporoparietal and thalamic hyperconnectivity in presymptomatic GRN carriers and extensive regions of atrophy in symptomatic carriers. Complement levels were associated with regions of hyperconnectivity, but not gray matter, in symptomatic carriers. Presymptomatic carriers with thalamic hyperconnectivity tended to have lower grey matter volume in bilateral insula and left lateral parietal cortex, which are among regions that deteriorate in GRN‐FTD. OCD symptom severity was associated with hypoconnectivity across all GRN carriers. Conclusion: In presymptomatic carriers, the co‐occurrence of hyperconnectivity, high NfL, and low gray matter suggests that tf‐fMRI hyperconnectivity may portend the onset of the neurodegenerative phase. These findings point toward hyperconnectivity as an indicator of approaching symptomatic onset.Item Gliovascular transcriptional perturbations in Alzheimer's disease reveal molecular mechanisms of blood brain barrier dysfunction(Springer Nature, 2024-06-20) İş, Özkan; Wang, Xue; Reddy, Joseph S.; Min, Yuhao; Yilmaz, Elanur; Bhattarai, Prabesh; Patel, Tulsi; Bergman, Jeremiah; Quicksall, Zachary; Heckman, Michael G.; Tutor-New, Frederick Q.; Demirdogen, Birsen Can; White, Launia; Koga, Shunsuke; Krause, Vincent; Inoue, Yasuteru; Kanekiyo, Takahisa; Cosacak, Mehmet Ilyas; Nelson, Nastasia; Lee, Annie J.; Vardarajan, Badri; Mayeux, Richard; Kouri, Naomi; Deniz, Kaancan; Carnwath, Troy; Oatman, Stephanie R.; Lewis-Tuffin, Laura J.; Nguyen, Thuy; Alzheimer’s Disease Neuroimaging Initiative; Carrasquillo, Minerva M.; Graff-Radford, Jonathan; Petersen, Ronald C.; Jack, Clifford R., Jr.; Kantarci, Kejal; Murray, Melissa E.; Nho, Kwangsik; Saykin, Andrew J.; Dickson, Dennis W.; Kizil, Caghan; Allen, Mariet; Ertekin-Taner, Nilüfer; Radiology and Imaging Sciences, School of MedicineTo uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer’s disease, we performed single nucleus RNA sequencing in 24 Alzheimer’s disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer’s disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer’s disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer’s disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer’s disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer’s disease.Item Long-term cognitive effects of menopausal hormone therapy: Findings from the KEEPS Continuation Study(Public Library of Science, 2024-11-21) Gleason, Carey E.; Dowling, N. Maritza; Kara, Firat; James, Taryn T.; Salazar, Hector; Ferrer Simo, Carola A.; Harman, Sherman M.; Manson, JoAnn E.; Hammers, Dustin B.; Naftolin, Frederick N.; Pal, Lubna; Miller, Virginia M.; Cedars, Marcelle I.; Lobo, Rogerio A.; Malek-Ahmadi, Michael; Kantarci, Kejal; Neurology, School of MedicineBackground: Findings from Kronos Early Estrogen Prevention Study (KEEPS)-Cog trial suggested no cognitive benefit or harm after 48 months of menopausal hormone therapy (mHT) initiated within 3 years of final menstrual period. To clarify the long-term effects of mHT initiated in early postmenopause, the observational KEEPS Continuation Study reevaluated cognition, mood, and neuroimaging effects in participants enrolled in the KEEPS-Cog and its parent study the KEEPS approximately 10 years after trial completion. We hypothesized that women randomized to transdermal estradiol (tE2) during early postmenopause would show cognitive benefits, while oral conjugated equine estrogens (oCEE) would show no effect, compared to placebo over the 10 years following randomization in the KEEPS trial. Methods and findings: The KEEPS-Cog (2005-2008) was an ancillary study to the KEEPS (NCT00154180), in which participants were randomized into 3 groups: oCEE (Premarin, 0.45 mg/d), tE2 (Climara, 50 μg/d) both with micronized progesterone (Prometrium, 200 mg/d for 12 d/mo) or placebo pills and patch for 48 months. KEEPS Continuation (2017-2022), an observational, longitudinal cohort study of KEEPS clinical trial, involved recontacting KEEPS participants approximately 10 years after the completion of the 4-year clinical trial to attend in-person research visits. Seven of the original 9 sites participated in the KEEPS Continuation, resulting in 622 women of original 727 being invited to return for a visit, with 299 enrolling across the 7 sites. KEEPS Continuation participants repeated the original KEEPS-Cog test battery which was analyzed using 4 cognitive factor scores and a global cognitive score. Cognitive data from both KEEPS and KEEPS Continuation were available for 275 participants. Latent growth models (LGMs) assessed whether baseline cognition and cognitive changes during KEEPS predicted cognitive performance at follow-up, and whether mHT randomization modified these relationships, adjusting for covariates. Similar health characteristics were observed at KEEPS randomization for KEEPS Continuation participants and nonparticipants (i.e., women not returning for the KEEPS Continuation). The LGM revealed significant associations between intercepts and slopes for cognitive performance across almost all domains, indicating that cognitive factor scores changed over time. Tests assessing the effects of mHT allocation on cognitive slopes during the KEEPS and across all years of follow-up including the KEEPS Continuation visit were all statistically nonsignificant. The KEEPS Continuation study found no long-term cognitive effects of mHT, with baseline cognition and changes during KEEPS being the strongest predictors of later performance. Cross-sectional comparisons confirmed that participants assigned to mHT in KEEPS (oCEE and tE2 groups) performed similarly on cognitive measures to those randomized to placebo, approximately 10 years after completion of the randomized treatments. These findings suggest that mHT poses no long-term cognitive harm; conversely, it provides no cognitive benefit or protective effects against cognitive decline. Conclusions: In these KEEPS Continuation analyses, there were no long-term cognitive effects of short-term exposure to mHT started in early menopause versus placebo. These data provide reassurance about the long-term neurocognitive safety of mHT for symptom management in healthy, recently postmenopausal women, while also suggesting that mHT does not improve or preserve cognitive function in this population.Item Longitudinal Accumulation of Cerebral Microhemorrhages in Dominantly Inherited Alzheimer Disease(American Academy of Neurology, 2021-03-23) Joseph-Mathurin, Nelly; Wang, Guoqiao; Kantarci, Kejal; Jack, Clifford R., Jr.; McDade, Eric; Hassenstab, Jason; Blazey, Tyler M.; Gordon, Brian A.; Su, Yi; Chen, Gengsheng; Massoumzadeh, Parinaz; Hornbeck, Russ C.; Allegri, Ricardo F.; Ances, Beau M.; Berman, Sarah B.; Brickman, Adam M.; Brooks, William S.; Cash, David M.; Chhatwal, Jasmeer P.; Chui, Helena C.; Correia, Stephen; Cruchaga, Carlos; Farlow, Martin R.; Fox, Nick C.; Fulham, Michael; Ghetti, Bernardino; Graff-Radford, Neill R.; Johnson, Keith A.; Karch, Celeste M.; Laske, Christoph; Lee, Athene K.W.; Levin, Johannes; Masters, Colin L.; Noble, James M.; O’Connor, Antoinette; Perrin, Richard J.; Preboske, Gregory M.; Ringman, John M.; Rowe, Christopher C.; Salloway, Stephen; Saykin, Andrew J.; Schofield, Peter R.; Shimada, Hiroyuki; Shoji, Mikio; Suzuki, Kazushi; Villemagne, Victor L.; Xiong, Chengjie; Yakushev, Igor; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L.S.; Pathology and Laboratory Medicine, School of MedicineObjective: To investigate the inherent clinical risks associated with the presence of cerebral microhemorrhages (CMHs) or cerebral microbleeds and characterize individuals at high risk for developing hemorrhagic amyloid-related imaging abnormality (ARIA-H), we longitudinally evaluated families with dominantly inherited Alzheimer disease (DIAD). Methods: Mutation carriers (n = 310) and noncarriers (n = 201) underwent neuroimaging, including gradient echo MRI sequences to detect CMHs, and neuropsychological and clinical assessments. Cross-sectional and longitudinal analyses evaluated relationships between CMHs and neuroimaging and clinical markers of disease. Results: Three percent of noncarriers and 8% of carriers developed CMHs primarily located in lobar areas. Carriers with CMHs were older, had higher diastolic blood pressure and Hachinski ischemic scores, and more clinical, cognitive, and motor impairments than those without CMHs. APOE ε4 status was not associated with the prevalence or incidence of CMHs. Prevalent or incident CMHs predicted faster change in Clinical Dementia Rating although not composite cognitive measure, cortical thickness, hippocampal volume, or white matter lesions. Critically, the presence of 2 or more CMHs was associated with a significant risk for development of additional CMHs over time (8.95 ± 10.04 per year). Conclusion: Our study highlights factors associated with the development of CMHs in individuals with DIAD. CMHs are a part of the underlying disease process in DIAD and are significantly associated with dementia. This highlights that in participants in treatment trials exposed to drugs, which carry the risk of ARIA-H as a complication, it may be challenging to separate natural incidence of CMHs from drug-related CMHs.Item Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration(American Academy of Neurology, 2021-05-04) Rojas, Julio C.; Wang, Ping; Staffaroni, Adam M.; Heller, Carolin; Cobigo, Yann; Wolf, Amy; Goh, Sheng-Yang M.; Ljubenkov, Peter A.; Heuer, Hilary W.; Fong, Jamie C.; Taylor, Joanne B.; Veras, Eliseo; Song, Linan; Jeromin, Andreas; Hanlon, David; Yu, Lili; Khinikar, Arvind; Sivasankaran, Rajeev; Kieloch, Agnieszka; Valentin, Marie-Anne; Karydas, Anna M.; Mitic, Laura L.; Pearlman, Rodney; Kornak, John; Kramer, Joel H.; Miller, Bruce L.; Kantarci, Kejal; Knopman, David S.; Graff-Radford, Neill; Petrucelli, Leonard; Rademakers, Rosa; Irwin, David J.; Grossman, Murray; Ramos, Eliana Marisa; Coppola, Giovanni; Mendez, Mario F.; Bordelon, Yvette; Dickerson, Bradford C.; Ghoshal, Nupur; Huey, Edward D.; Mackenzie, Ian R.; Appleby, Brian S.; Domoto-Reilly, Kimiko; Hsiung, Ging-Yuek R.; Toga, Arthur W.; Weintraub, Sandra; Kaufer, Daniel I.; Kerwin, Diana; Litvan, Irene; Onyike, Chiadikaobi U.; Pantelyat, Alexander; Roberson, Erik D.; Tartaglia, Maria C.; Foroud, Tatiana; Chen, Weiping; Czerkowicz, Julie; Graham, Danielle L.; van Swieten, John C.; Borroni, Barbara; Sanchez-Valle, Raquel; Moreno, Fermin; Laforce, Robert; Graff, Caroline; Synofzik, Matthis; Galimberti, Daniela; Rowe, James B.; James B., Mario; Finger, Elizabeth; Vandenberghe, Rik; de Mendonça, Alexandre; Tagliavini, Fabrizio; Santana, Isabel; Ducharme, Simon; Butler, Chris R.; Gerhard, Alexander; Levin, Johannes; Danek, Adrian; Otto, Markus; Sorbi, Sandro; Cash, David M.; Convery, Rhian S.; Bocchetta, Martina; Foiani, Martha; Greaves, Caroline V.; Peakman, Georgia; Russell, Lucy; Swift, Imogen; Todd, Emily; Rohrer, Jonathan D.; Boeve, Bradley F.; Rosen, Howard J.; Boxer, Adam L.; Neurology, School of MedicineObjective: We tested the hypothesis that plasma neurofilament light chain (NfL) identifies asymptomatic carriers of familial frontotemporal lobar degeneration (FTLD)-causing mutations at risk of disease progression. Methods: Baseline plasma NfL concentrations were measured with single-molecule array in original (n = 277) and validation (n = 297) cohorts. C9orf72, GRN, and MAPT mutation carriers and noncarriers from the same families were classified by disease severity (asymptomatic, prodromal, and full phenotype) using the CDR Dementia Staging Instrument plus behavior and language domains from the National Alzheimer's Disease Coordinating Center FTLD module (CDR+NACC-FTLD). Linear mixed-effect models related NfL to clinical variables. Results: In both cohorts, baseline NfL was higher in asymptomatic mutation carriers who showed phenoconversion or disease progression compared to nonprogressors (original: 11.4 ± 7 pg/mL vs 6.7 ± 5 pg/mL, p = 0.002; validation: 14.1 ± 12 pg/mL vs 8.7 ± 6 pg/mL, p = 0.035). Plasma NfL discriminated symptomatic from asymptomatic mutation carriers or those with prodromal disease (original cutoff: 13.6 pg/mL, 87.5% sensitivity, 82.7% specificity; validation cutoff: 19.8 pg/mL, 87.4% sensitivity, 84.3% specificity). Higher baseline NfL correlated with worse longitudinal CDR+NACC-FTLD sum of boxes scores, neuropsychological function, and atrophy, regardless of genotype or disease severity, including asymptomatic mutation carriers. Conclusions: Plasma NfL identifies asymptomatic carriers of FTLD-causing mutations at short-term risk of disease progression and is a potential tool to select participants for prevention clinical trials. Trial registration information: ClinicalTrials.gov Identifier: NCT02372773 and NCT02365922. Classification of evidence: This study provides Class I evidence that in carriers of FTLD-causing mutations, elevation of plasma NfL predicts short-term risk of clinical progression.Item Preserved transcriptional networks in immune signaling pathways associated with chronic disease identified in Alzheimer’s disease and Parkinson’s disease, cross‐tissue analysis(Wiley, 2025-01-03) Strickland, Samantha L.; Tsai, Wei; Chen, Xuan; Cherukuri, Yesesri; Allen, Mariet; Quicksall, Zachary; Wang, Xue; Kantarci, Kejal; Carrasquillo, Minerva M.; Nho, Kwangsik; Saykin, Andrew J.; Petersen, Ronald C.; Reddy, Joseph S.; Ertekin-Taner, Nilüfer; Radiology and Imaging Sciences, School of MedicineBackground: Systemic inflammation plays a pivotal role in many chronic diseases including Alzheimer’s disease (AD). Assessing the composition of immune pathways in neurodegenerative diseases can contribute to precision medicine. Using publicly available transcriptomic data, we sought to elucidate transcriptional networks pertinent to inflammatory pathways across brain regions and peripheral blood in AD/mild cognitive impairment (MCI) and peripheral blood in Parkinson’s disease (PD). Method: For the AD/MCI vs. control dataset, we analyzed bulk‐RNAseq collected from 6 brain regions of donors from ROSMAP, Mayo Clinic, and Mount Sinai School of Medicine (MSSM) brain banks available from the AMP‐AD consortium. Ante‐mortem, blood RNAseq expression data was retrieved from the AMP‐AD Emory Vascular cohort and Mayo Clinic Study of Aging (MCSA). We also collected blood‐derived microarray expression data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). For the PD vs Control dataset, blood‐derived bulk‐RNAseq from the PDBP and PPMI cohorts were available through the AMP‐PD consortium. Following quality control, normalization, and residual generation to account for biological and technical variables, co‐expression network modules and their enriched pathways were identified using WGCNA within each dataset. Module/trait correlation tests for aging and diagnosis (cases [AD/MCI or PD] vs control) phenotypes were evaluated. Gene Ontology enrichment analyses were executed to identify enriched pathways and brain or blood cell types within the modules. Modules were tested for preservation across cohorts. Result: We identified conserved immune signatures across brain regions and cohorts. Modules involved in immune response were preserved across all cohorts. Blood consensus modules involved in immune response were preserved in the brain and vice versa. Some immune modules were associated with AD/MCI, PD, and/or aging. Brain immune modules are significantly associated with aging and/or AD. Significant correlations (q<0.05) with PD diagnosis were present. In the MCSA and Emory vascular cohorts, there were no significant (q<0.05) associations between modules and diagnosis, while in ADNI there were nominal (p<0.05) associations. Conclusion: Preserved transcriptional immune networks were identified across blood and brain and across two neurodegenerative diseases. Expanding gene co‐expression network analyses to other diseases and integrating additional omics measures and phenotypes can further strengthen these findings to unravel the immune signatures across complex diseases.Item Psychotropic medication usage in sporadic versus genetic behavioral-variant frontotemporal dementia(Wiley, 2025) Vargas-Gonzalez, Juan-Camilo; Dimal, Nico; Cortez, Kasey; Heuer, Hilary; Forsberg, Leah K.; Appleby, Brian S.; Barmada, Sami; Bozoki, Andrea; Clark, David; Cobigo, Yann; Darby, R. Ryan; Dickerson, Bradford C.; Domoto-Reilly, Kimiko; Galasko, Douglas R.; Geschwind, Daniel H.; Ghoshal, Nupur; Graff-Radford, Neill R.; Grant, Ian M.; Irwin, David; Hsiung, Ging-Yuek Robin; Honig, Lawrence S.; Kantarci, Kejal; Léger, Gabriel C.; Litvan, Irene; Mackenzie, Ian R.; Masdeu, Joseph C.; Mendez, Mario F.; Onyike, Chiadi U.; Pascual, Belen; Pressman, Peter; Ramos, Eliana Marisa; Roberson, Erik D.; Rogalski, Emily; Boeve, Brad F.; Boxer, Adam L.; Rosen, Howie J.; Tartaglia, Maria Carmela; ALLFTD Consortium Investigators; Neurology, School of MedicineIntroduction: Psychotropic medication (PM) use in behavioral-variant frontotemporal dementia (bvFTD) is higher than in other dementias. However, no information exists on whether PM use differs between sporadic and genetic bvFTD. Methods: We analyzed data from sporadic and genetic bvFTD participants with PM prescriptions in the Advancing Research and Treatment in Frontotemporal Lobar Degeneration/Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects study. We estimated ordinal odds ratio (OOR) of having more PM comparing sporadic and genetic bvFTD. Finally, we explored the neuropsychiatric symptom (NPS) combinations using classification and regression trees (CART). Results: We included 263 with sporadic and 193 with genetic bvFTD. The OOR for sporadic bvFTD to be on PM was 1.75 (95% confidence interval: 1.21 to 2.53) for the fully adjusted model. CART revealed the most common NPS combination was apathy + personality changes in 18% of participants. Discussion: Participants with sporadic bvFTD were twice as likely to be on PM compared to genetic bvFTD. The reason for increased PM usage in sporadic bvFTD participants should be further investigated. Highlights: We report on patients with behavioral variant frontotemporal dementia (bvFTD). We evaluated the psychotropic medication (PM) prescription at baseline in the cohort. Patients with sporadic bvFTD had more prescriptions for PM than genetic patients. The frequency of symptoms combination was different in sporadic and genetic bvFTD.