- Browse by Author
Browsing by Author "Kaneko, Lynn K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Allosteric differences dictate GroEL complementation of E. coli(Wiley, 2022) Sivinski, Jared; Ngo, Duc; Zerio, Christopher J.; Ambrose, Andrew J.; Watson, Edmond R.; Kaneko, Lynn K.; Kostelic, Marius M.; Stevens, Mckayla; Ray, Anne-Marie; Park, Yangshin; Wu, Chunxiang; Marty, Michael T.; Hoang, Quyen Q.; Zhang, Donna D.; Lander, Gabriel C.; Johnson, Steven M.; Chapman, Eli; Biochemistry and Molecular Biology, School of MedicineGroES/GroEL is the only bacterial chaperone essential under all conditions, making it a potential antibiotic target. Rationally targeting ESKAPE GroES/GroEL as an antibiotic strategy necessitates studying their structure and function. Herein, we outline the structural similarities between Escherichia coli and ESKAPE GroES/GroEL and identify significant differences in intra- and inter-ring cooperativity, required in the refolding cycle of client polypeptides. Previously, we observed that one-half of ESKAPE GroES/GroEL family members could not support cell viability when each was individually expressed in GroES/GroEL-deficient E. coli cells. Cell viability was found to be dependent on the allosteric compatibility between ESKAPE and E. coli subunits within mixed (E. coli and ESKAPE) tetradecameric GroEL complexes. Interestingly, differences in allostery did not necessarily result in differences in refolding rate for a given homotetradecameric chaperonin. Characterization of ESKAPE GroEL allostery, ATPase, and refolding rates in this study will serve to inform future studies focused on inhibitor design and mechanism of action studies.Item Functional Differences between E. coli and ESKAPE Pathogen GroES/GroEL(American Society for Microbiology, 2021-01-12) Sivinski, Jared; Ambrose, Andrew J.; Panfilenko, Iliya; Zerio, Christopher J.; Machulis, Jason M.; Mollasalehi, Niloufar; Kaneko, Lynn K.; Stevens, Mckayla; Ray, Anne-Marie; Park, Yangshin; Wu, Chunxiang; Hoang, Quyen Q.; Johnson, Steven M.; Chapmana, Eli; Biochemistry and Molecular Biology, School of MedicineAs the GroES/GroEL chaperonin system is the only bacterial chaperone that is essential under all conditions, we have been interested in the development of GroES/GroEL inhibitors as potential antibiotics. Using Escherichia coli GroES/GroEL as a surrogate, we have discovered several classes of GroES/GroEL inhibitors that show potent antibacterial activity against both Gram-positive and Gram-negative bacteria. However, it remains unknown if E. coli GroES/GroEL is functionally identical to other GroES/GroEL chaperonins and hence if our inhibitors will function against other chaperonins. Herein we report our initial efforts to characterize the GroES/GroEL chaperonins from clinically significant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). We used complementation experiments in GroES/GroEL-deficient and -null E. coli strains to report on exogenous ESKAPE chaperone function. In GroES/GroEL-deficient (but not knocked-out) E. coli, we found that only a subset of the ESKAPE GroES/GroEL chaperone systems could complement to produce a viable organism. Surprisingly, GroES/GroEL chaperone systems from two of the ESKAPE pathogens were found to complement in E. coli, but only in the strict absence of either E. coli GroEL (P. aeruginosa) or both E. coli GroES and GroEL (E. faecium). In addition, GroES/GroEL from S. aureus was unable to complement E. coli GroES/GroEL under all conditions. The resulting viable strains, in which E. coli groESL was replaced with ESKAPE groESL, demonstrated similar growth kinetics to wild-type E. coli, but displayed an elongated phenotype (potentially indicating compromised GroEL function) at some temperatures. These results suggest functional differences between GroES/GroEL chaperonins despite high conservation of amino acid identity.