- Browse by Author
Browsing by Author "Kamocki, K."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Bioactive nanofibrous scaffolds for regenerative endodontics(SAGE, 2013-11) Bottino, M.C.; Kamocki, K.; Yassen, G.H.; Platt, J.A.; Vail, M.M.; Ehrlich, Y.; Spolnik, K.J.; Gregory, R.L.; Endodontics, School of DentistryHere we report the synthesis, materials characterization, antimicrobial capacity, and cytocompatibility of novel antibiotic-containing scaffolds. Metronidazole (MET) or Ciprofloxacin/(CIP) was mixed with a polydioxanone (PDS)polymer solution at 5 and 25 wt% and processed into fibers. PDS fibers served as a control. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), tensile testing, and high-performance liquid chromatography (HPLC) were used to assess fiber morphology, chemical structure, mechanical properties, and drug release, respectively. Antimicrobial properties were evaluated against those of Porphyromonas gingivalis/Pg and Enterococcus faecalis/Ef. Cytotoxicity was assessed in human dental pulp stem cells (hDPSCs). Statistics were performed, and significance was set at the 5% level. SEM imaging revealed a submicron fiber diameter. FTIR confirmed antibiotic incorporation. The tensile values of hydrated 25 wt% CIP scaffold were significantly lower than those of all other groups. Analysis of HPLC data confirmed gradual, sustained drug release from the scaffolds over 48 hrs. CIP-containing scaffolds significantly (p < .00001) inhibited biofilm growth of both bacteria. Conversely, MET-containing scaffolds inhibited only Pg growth. Agar diffusion confirmed the antimicrobial properties against specific bacteria for the antibiotic-containing scaffolds. Only the 25 wt% CIP-containing scaffolds were cytotoxic. Collectively, this study suggests that polymer-based antibiotic-containing electrospun scaffolds could function as a biologically safe antimicrobial drug delivery system for regenerative endodontics.Item Dental pulp stem cell responses to novel antibiotic-containing scaffolds for regenerative endodontics(Wiley, 2015-12) Kamocki, K.; Nör, J. E.; Bottino, M. C.; Department of Restorative Dentistry, IU School of DentistryAIM: To evaluate both the drug-release profile and the effects on human dental pulp stem cells' (hDPSC) proliferation and viability of novel bi-mix antibiotic-containing scaffolds intended for use as a drug delivery system for root canal disinfection prior to regenerative endodontics. METHODOLOGY: Polydioxanone (PDS)-based fibrous scaffolds containing both metronidazole (MET) and ciprofloxacin (CIP) at selected ratios were synthesized via electrospinning. Fibre diameter was evaluated based on scanning electron microscopy (SEM) images. Pure PDS scaffolds and a saturated CIP/MET solution (i.e. 50 mg of each antibiotic in 1 mL) (hereafter referred to as DAP) served as both negative (nontoxic) and positive (toxic) controls, respectively. High-performance liquid chromatography (HPLC) was performed to investigate the amount of drug(s) released from the scaffolds. WST-1(®) proliferation assay was used to evaluate the effect of the scaffolds on cell proliferation. LIVE/DEAD(®) assay was used to qualitatively assess cell viability. Data obtained from drug release and proliferation assays were statistically analysed at the 5% significance level. RESULTS: A burst release of CIP and MET was noted within the first 24 h, followed by a sustained maintenance of the drug(s) concentration for 14 days. A concentration-dependent trend was noticed upon hDPSCs' exposure to all CIP-containing scaffolds, where increasing the CIP concentration resulted in reduced cell proliferation (P < 0.05) and viability. In groups exposed to pure MET or pure PDS scaffolds, no changes in proliferation were observed. CONCLUSIONS: Synthesized antibiotic-containing scaffolds had significantly lower effects on hDPSCs proliferation when compared to the saturated CIP/MET solution (DAP).