- Browse by Author
Browsing by Author "Kalwat, Michael A."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item A p21-activated kinase (PAK1) signaling cascade coordinately regulates F-actin remodeling and insulin granule exocytosis in pancreatic β cells(Elsevier, 2013) Kalwat, Michael A.; Yoder, Stephanie M.; Wang, Zhanxiang; Thurmond, Debbie C.; Biochemistry and Molecular Biology, School of MedicineHuman islet studies implicate an important signaling role for the Cdc42 effector protein p21-activated kinase (PAK1) in the sustained/second-phase of insulin secretion. Because human islets from type 2 diabetic donors lack ∼80% of normal PAK1 protein levels, the mechanistic requirement for PAK1 signaling in islet function was interrogated. Similar to MIN6 β cells, human islets elicited glucose-stimulated PAK1 activation that was sensitive to the PAK1 inhibitor, IPA3. Given that sustained insulin secretion has been correlated with glucose-induced filamentous actin (F-actin) remodeling, we tested the hypothesis that a Cdc42-activated PAK1 signaling cascade is required to elicit F-actin remodeling to mobilize granules to the cell surface. Live-cell imaging captured the glucose-induced cortical F-actin remodeling in MIN6 β cells; IPA3-mediated inhibition of PAK1 abolished this remodeling. IPA3 also ablated glucose-stimulated insulin granule accumulation at the plasma membrane, consistent with its role in sustained/second-phase insulin release. Both IPA3 and a selective inhibitor of the Cdc42 GTPase, ML-141, blunted the glucose-stimulated activation of Raf-1, suggesting Raf-1 to be downstream of Cdc42→PAK1. IPA3 also inhibited MEK1/2 activation, implicating the MEK1/2→ERK1/2 cascade to occur downstream of PAK1. Importantly, PD0325901, a new selective inhibitor of MEK1/2→ERK1/2 activation, impaired F-actin remodeling and the sustained/amplification pathway of insulin release. Taken together, these data suggest that glucose-mediated activation of Cdc42 leads to activation of PAK1 and prompts activation of its downstream targets Raf-1, MEK1/2 and ERK1/2 to elicit F-actin remodeling and recruitment of insulin granules to the plasma membrane to support the sustained phase of insulin release.Item High-throughput screening for insulin secretion modulators(Springer, 2021) Kalwat, Michael A.; Medicine, School of MedicineThe application of forward chemical genetics to insulin secretion in high-throughput has been uncommon because of high costs and technical challenges. However, with the advancement of secreted luciferase tools, it has become feasible for small laboratories to screen large numbers of compounds for effects on insulin secretion. The purpose of this chapter is to outline the methods involved in high-throughput screening for small molecules that chronically impact pancreatic beta cell function. Attention is given to specific points in the protocol that help to improve the dynamic range and reduce variability in the assay. Using this approach in 384-well format, at least 48 and as many as 144 plates can theoretically be processed per week. This protocol serves as a guideline and can be modified as required for alternate stimulation paradigms and improved upon as new technologies become available.Item The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress(Endocrine Society, 2021-11) Kalwat, Michael A.; Scheuner, Donalyn; Rodrigues-dos-Santos, Karina; Eizirik, Decio L.; Cobb, Melanie H.; Medicine, School of MedicinePancreatic β cells dedicate much of their protein translation capacity to producing insulin to maintain glucose homeostasis. In response to increased secretory demand, β cells can compensate by increasing insulin production capability even in the face of protracted peripheral insulin resistance. The ability to amplify insulin secretion in response to hyperglycemia is a critical facet of β-cell function, and the exact mechanisms by which this occurs have been studied for decades. To adapt to the constant and fast-changing demands for insulin production, β cells use the unfolded protein response of the endoplasmic reticulum. Failure of these compensatory mechanisms contributes to both type 1 and 2 diabetes. Additionally, studies in which β cells are "rested" by reducing endogenous insulin demand have shown promise as a therapeutic strategy that could be applied more broadly. Here, we review recent findings in β cells pertaining to the metabolic amplifying pathway, the unfolded protein response, and potential advances in therapeutics based on β-cell rest.Item RIPK3 promotes islet amyloid-induced β-cell loss and glucose intolerance in a humanized mouse model of type 2 diabetes(Elsevier, 2024) Mukherjee, Noyonika; Contreras, Christopher J.; Lin, Li; Colglazier, Kaitlyn A.; Mather, Egan G.; Kalwat, Michael A.; Esser, Nathalie; Kahn, Steven E.; Templin, Andrew T.; Biochemistry and Molecular Biology, School of MedicineObjective: Aggregation of human islet amyloid polypeptide (hIAPP), a β-cell secretory product, leads to islet amyloid deposition, islet inflammation and β-cell loss in type 2 diabetes (T2D), but the mechanisms that underlie this process are incompletely understood. Receptor interacting protein kinase 3 (RIPK3) is a pro-death signaling molecule that has recently been implicated in amyloid-associated brain pathology and β-cell cytotoxicity. Here, we evaluated the role of RIPK3 in amyloid-induced β-cell loss using a humanized mouse model of T2D that expresses hIAPP and is prone to islet amyloid formation. Methods: We quantified amyloid deposition, cell death and caspase 3/7 activity in islets isolated from WT, Ripk3-/-, hIAPP and hIAPP; Ripk3-/- mice in real time, and evaluated hIAPP-stimulated inflammation in WT and Ripk3-/- bone marrow derived macrophages (BMDMs) in vitro. We also characterized the role of RIPK3 in glucose stimulated insulin secretion (GSIS) in vitro and in vivo. Finally, we examined the role of RIPK3 in high fat diet (HFD)-induced islet amyloid deposition, β-cell loss and glucose homeostasis in vivo. Results: We found that amyloid-prone hIAPP mouse islets exhibited increased cell death and caspase 3/7 activity compared to amyloid-free WT islets in vitro, and this was associated with increased RIPK3 expression. hIAPP; Ripk3-/- islets were protected from amyloid-induced cell death compared to hIAPP islets in vitro, although amyloid deposition and caspase 3/7 activity were not different between genotypes. We observed that macrophages are a source of Ripk3 expression in isolated islets, and that Ripk3-/- BMDMs were protected from hIAPP-stimulated inflammatory gene expression (Tnf, Il1b, Nos2). Following 52 weeks of HFD feeding, islet amyloid-prone hIAPP mice exhibited impaired glucose tolerance and decreased β-cell area compared to WT mice in vivo, whereas hIAPP; Ripk3-/- mice were protected from these impairments. Conclusions: In conclusion, loss of RIPK3 protects from amyloid-induced inflammation and islet cell death in vitro and amyloid-induced β-cell loss and glucose intolerance in vivo. We propose that therapies targeting RIPK3 may reduce islet inflammation and β-cell loss and improve glucose homeostasis in the pathogenesis of T2D.Item SAT074 Induction Of Insulin Hypersecretion Uncovers Distinctions Between Adaptive And Maladaptive Endoplasmic Reticulum Stress Response In Beta Cells(The Endocrine Society, 2023-10-05) Roy, Gitanjali; Rodrigues dos Santos, Karina; Kwakye, Michael B.; Tan, Zhiyong; Johnson, Travis S.; Kalwat, Michael A.; Biostatistics and Health Data Science, School of MedicinePancreatic islet β-cells release insulin to maintain glucose homeostasis. β-cells must translate, package, and secrete large amounts of insulin. During this process the unfolded protein response of the endoplasmic reticulum (UPRER) is induced to maintain these functions. However, stimuli that force β-cell to secrete insulin at enhanced rates and for prolonged durations risk inducing the terminal UPRER and eventual apoptosis. In a chemical screen for insulin secretion modulators, we discovered SW016789 which caused hypersecretion of insulin and led to a transient induction of the UPRER, but not apoptosis. In contrast, SERCA2 ER Ca2+ pump inhibitor thapsigargin induces the terminal UPRER. We hypothesized that SW016789 can be used as a tool compound to discover genes involved in β-cell adaptation to hypersecretion-induced stress. We performed time course transcriptomics in MIN6 β-cells exposed to SW016789 (5 µM) or thapsigargin (100 nM) from 0-24 h. Unbiased analyses using a Dirichlet process Gaussian process (DPGP) method revealed clusters of genes temporally co-regulated and the genes within these clusters were distinct between SW016789 and thapsigargin treatments. In particular, after 6 h of SW016789-induced hypersecretion we found a highly induced cluster of genes (SW cluster 3) enriched in adaptive UPRER factors (e.g. Manf). Conversely, most of the thapsigargin-induced genes clustered at 24 h and were enriched for terminal UPRER factors (e.g. Txnip). Pathway analysis of SW cluster 3 indicated that genes involved in in regulation of mRNA methylation and ER-associated degradation were also induced by SW016789 sooner and with greater amplitude than by thapsigargin, suggesting distinct differences in the handling of protein translation and degradation. From the SW cluster 3 genes we selected proteins known to be ER-associated or secreted and generated stable transgenic or CRISPR knockout MIN6 β-cell lines for each. Our data suggest altered expression of these factors may impair glucose-stimulated insulin secretion responses and alter cell viability in presence or absence of ER stressors including cytokines, thapsigargin, and tunicamycin. In conclusion, we have successfully shown that pharmacological induction of insulin hypersecretion can induce a distinct transcriptional outcome from that of canonically-induced UPRER and that we can take advantage of this property to discover new β-cell regulatory pathways and targets. We envision this dataset as a resource for the secretory biology and islet biology communities.Item Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet β cells(Springer Nature, 2013-08-23) Kalwat, Michael A.; Thurmond, Debbie C.; Pediatrics, School of MedicineThe maintenance of whole-body glucose homeostasis is critical for survival, and is controlled by the coordination of multiple organs and endocrine systems. Pancreatic islet β cells secrete insulin in response to nutrient stimuli, and insulin then travels through the circulation promoting glucose uptake into insulin-responsive tissues such as liver, skeletal muscle and adipose. Many of the genes identified in human genome-wide association studies of diabetic individuals are directly associated with β cell survival and function, giving credence to the idea that β-cell dysfunction is central to the development of type 2 diabetes. As such, investigations into the mechanisms by which β cells sense glucose and secrete insulin in a regulated manner are a major focus of current diabetes research. In particular, recent discoveries of the detailed role and requirements for reorganization/remodeling of filamentous actin (F-actin) in the regulation of insulin release from the β cell have appeared at the forefront of islet function research, having lapsed in prior years due to technical limitations. Recent advances in live-cell imaging and specialized reagents have revealed localized F-actin remodeling to be a requisite for the normal biphasic pattern of nutrient-stimulated insulin secretion. This review will provide an historical look at the emergent focus on the role of the actin cytoskeleton and its regulation of insulin secretion, leading up to the cutting-edge research in progress in the field today.Item Small molecule glucagon release inhibitors with activity in human islets(Frontiers Media, 2023-04-19) Kalwat, Michael A.; Rodrigues-dos-Santos, Karina; Binns, Derk D.; Wei, Shuguang; Zhou, Anwu; Evans, Matthew R.; Posner, Bruce A.; Roth, Michael G.; Cobb, Melanie H.; Medicine, School of MedicinePurpose: Type 1 diabetes (T1D) accounts for an estimated 5% of all diabetes in the United States, afflicting over 1.25 million individuals. Maintaining long-term blood glucose control is the major goal for individuals with T1D. In T1D, insulin-secreting pancreatic islet β-cells are destroyed by the immune system, but glucagon-secreting islet α-cells survive. These remaining α-cells no longer respond properly to fluctuating blood glucose concentrations. Dysregulated α-cell function contributes to hyper- and hypoglycemia which can lead to macrovascular and microvascular complications. To this end, we sought to discover small molecules that suppress α-cell function for their potential as preclinical candidate compounds. Prior high-throughput screening identified a set of glucagon-suppressing compounds using a rodent α-cell line model, but these compounds were not validated in human systems. Results: Here, we dissociated and replated primary human islet cells and exposed them to 24 h treatment with this set of candidate glucagon-suppressing compounds. Glucagon accumulation in the medium was measured and we determined that compounds SW049164 and SW088799 exhibited significant activity. Candidate compounds were also counter-screened in our InsGLuc-MIN6 β-cell insulin secretion reporter assay. SW049164 and SW088799 had minimal impact on insulin release after a 24 h exposure. To further validate these hits, we treated intact human islets with a selection of the top candidates for 24 h. SW049164 and SW088799 significantly inhibited glucagon release into the medium without significantly altering whole islet glucagon or insulin content. In concentration-response curves SW088799 exhibited significant inhibition of glucagon release with an IC50 of 1.26 µM. Conclusion: Given the set of tested candidates were all top hits from the primary screen in rodent α-cells, this suggests some conservation of mechanism of action between human and rodents, at least for SW088799. Future structure-activity relationship studies of SW088799 may aid in elucidating its protein target(s) or enable its use as a tool compound to suppress α-cell activity in vitro.Item Small Molecule-mediated Insulin Hypersecretion Induces Transient ER Stress Response and Loss of Beta Cell Function(Oxford University Press, 2022) Rodrigues-dos-Santos, Karina; Roy, Gitanjali; Binns, Derk D.; Grzemska, Magdalena G.; Barella, Luiz F.; Armoo, Fiona; McCoy, Melissa K.; Huynh, Andy V.; Yang, Jonathan Z.; Posner, Bruce A.; Cobb, Melanie H.; Kalwat, Michael A.; Medicine, School of MedicinePancreatic islet beta cells require a fine-tuned endoplasmic reticulum (ER) stress response for normal function; abnormal ER stress contributes to diabetes pathogenesis. Here, we identified a small molecule, SW016789, with time-dependent effects on beta cell ER stress and function. Acute treatment with SW016789 potentiated nutrient-induced calcium influx and insulin secretion, while chronic exposure to SW016789 transiently induced ER stress and shut down secretory function in a reversible manner. Distinct from the effects of thapsigargin, SW016789 did not affect beta cell viability or apoptosis, potentially due to a rapid induction of adaptive genes, weak signaling through the eIF2α kinase PERK, and lack of oxidative stress gene Txnip induction. We determined that SW016789 acted upstream of voltage-dependent calcium channels (VDCCs) and potentiated nutrient- but not KCl-stimulated calcium influx. Measurements of metabolomics, oxygen consumption rate, and G protein-coupled receptor signaling did not explain the potentiating effects of SW016789. In chemical cotreatment experiments, we discovered synergy between SW016789 and activators of protein kinase C and VDCCs, suggesting involvement of these pathways in the mechanism of action. Finally, chronically elevated calcium influx was required for the inhibitory impact of SW016789, as blockade of VDCCs protected human islets and MIN6 beta cells from hypersecretion-induced dysfunction. We conclude that beta cells undergoing this type of pharmacological hypersecretion have the capacity to suppress their function to mitigate ER stress and avoid apoptosis. These results have the potential to uncover beta cell ER stress mitigation factors and add support to beta cell rest strategies to preserve function.Item Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement(Oxford University Press, 2022) Goode, Roy A.; Hum, Julia M.; Kalwat, Michael A.; Medicine, School of MedicineDiabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies.