- Browse by Author
Browsing by Author "Kalim, Sahir"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A Metabolomics Approach to Identify Metabolites Associated With Mortality in Patients Receiving Maintenance Hemodialysis(Elsevier, 2024-06-29) Al Awadhi, Solaf; Myint, Leslie; Guallar, Eliseo; Clish, Clary B.; Wulczyn, Kendra E.; Kalim, Sahir; Thadhani, Ravi; Segev, Dorry L.; McAdams DeMarco, Mara; Moe, Sharon M.; Moorthi, Ranjani N.; Hostetter, Thomas H.; Himmelfarb, Jonathan; Meyer, Timothy W.; Powe, Neil R.; Tonelli, Marcello; Rhee, Eugene P.; Shafi, Tariq; Medicine, School of MedicineIntroduction: Uremic toxins contributing to increased risk of death remain largely unknown. We used untargeted metabolomics to identify plasma metabolites associated with mortality in patients receiving maintenance hemodialysis. Methods: We measured metabolites in serum samples from 522 Longitudinal US/Canada Incident Dialysis (LUCID) study participants. We assessed the association between metabolites and 1-year mortality, adjusting for age, sex, race, cardiovascular disease, diabetes, body mass index, serum albumin, Kt/Vurea, dialysis duration, and country. We modeled these associations using limma, a metabolite-wise linear model with empirical Bayesian inference, and 2 machine learning (ML) models: Least absolute shrinkage and selection operator (LASSO) and random forest (RF). We accounted for multiple testing using a false discovery rate (pFDR) adjustment. We defined significant mortality-metabolite associations as pFDR < 0.1 in the limma model and metabolites of at least medium importance in both ML models. Results: The mean age of the participants was 64 years, the mean dialysis duration was 35 days, and there were 44 deaths (8.4%) during a 1-year follow-up period. Two metabolites were significantly associated with 1-year mortality. Quinolinate levels (a kynurenine pathway metabolite) were 1.72-fold higher in patients who died within year 1 compared with those who did not (pFDR, 0.009), wheras mesaconate levels (an emerging immunometabolite) were 1.57-fold higher (pFDR, 0.002). An additional 42 metabolites had high importance as per LASSO, 46 per RF, and 9 per both ML models but were not significant per limma. Conclusion: Quinolinate and mesaconate were significantly associated with a 1-year risk of death in incident patients receiving maintenance hemodialysis. External validation of our findings is needed.Item FGF23 and Cardiovascular Structure and Function in Advanced Chronic Kidney Disease(Wolters Kluwer, 2022-07-05) Halim, Arvin; Burney, Heather N.; Li, Xiaochun; Li, Yang; Tomkins, Claudia; Siedlecki, Andrew M.; Lu, Tzong-shi; Kalim, Sahir; Thadhani, Ravi; Moe, Sharon; Ting, Stephen M.S.; Zehnder, Daniel; Hiemstra, Thomas F.; Lim, Kenneth; Medicine, School of MedicineBackground: Fibroblast growth factor 23 (FGF23) is a bone-derived phosphatonin that is elevated in chronic kidney disease (CKD) and has been implicated in the development of cardiovascular disease. It is unknown whether elevated FGF23 in CKD is associated with impaired cardiovascular functional capacity, as assessed by maximum exercise oxygen consumption (VO2Max). We sought to determine whether FGF23 is associated with cardiovascular functional capacity in patients with advanced CKD and after improvement of VO2Max by kidney transplantation. Methods: We performed secondary analysis of 235 patients from the Cardiopulmonary Exercise Testing in Renal Failure and After Kidney Transplantation (CAPER) cohort, which recruited patients with stage 5 CKD who underwent kidney transplantation or were waitlisted and hypertensive controls. All patients underwent cardiopulmonary exercise testing (CPET) and echocardiography and were followed longitudinally for 1 year after study enrollment. Results: Patients across FGF23 quartiles differed in BMI (P=0.004) and mean arterial pressure (P<0.001) but did not significantly differ in sex (P=0.5) or age (P=0.08) compared with patients with lower levels of FGF23. Patients with higher FGF23 levels had impaired VO2Max (Q1: 24.2±4.8 ml/min per kilogram; Q4: 18.6±5.2 ml/min per kilogram; P<0.001), greater left ventricular mass index (LVMI; P<0.001), reduced HR at peak exercise (P<0.001), and maximal workload (P<0.001). Kidney transplantation conferred a significant decline in FGF23 at 2 months (P<0.001) before improvement in VO2Max at 1 year (P=0.008). Multivariable regression modeling revealed that changes in FGF23 was significantly associated with VO2Max in advanced CKD (P<0.001) and after improvement after kidney transplantation (P=0.006). FGF23 was associated with LVMI before kidney transplantation (P=0.003), however this association was lost after adjustment for dialysis status (P=0.4). FGF23 was not associated with LVMI after kidney transplantation in all models. Conclusions: FGF23 levels are associated with alterations in cardiovascular functional capacity in advanced CKD and after kidney transplantation. FGF23 is only associated with structural cardiac adaptations in advanced CKD but this was modified by dialysis status, and was not associated after kidney transplantation.Item Myocardial Cytoskeletal Adaptations in Advanced Kidney Disease(American Heart Association, 2022) Halim, Arvin; Narayanan, Gayatri; Hato, Takashi; Ho, Lilun; Wan, Douglas; Siedlecki, Andrew M.; Rhee, Eugene P.; Allegretti, Andrew S.; Nigwekar, Sagar U.; Zehnder, Daniel; Hiemstra, Thomas F.; Bonventre, Joseph V.; Charytan, David M.; Kalim, Sahir; Thadhani, Ravi; Lu, Tzongshi; Lim, Kenneth; Medicine, School of MedicineBackground: The myocardial cytoskeleton functions as the fundamental framework critical for organelle function, bioenergetics and myocardial remodeling. To date, impairment of the myocardial cytoskeleton occurring in the failing heart in patients with advanced chronic kidney disease has been largely undescribed. Methods and Results: We conducted a 3‐arm cross‐sectional cohort study of explanted human heart tissues from patients who are dependent on hemodialysis (n=19), hypertension (n=10) with preserved renal function, and healthy controls (n=21). Left ventricular tissues were subjected to pathologic examination and next‐generation RNA sequencing. Mechanistic and interference RNA studies utilizing in vitro human cardiac fibroblast models were performed. Left ventricular tissues from patients undergoing hemodialysis exhibited increased myocardial wall thickness and significantly greater fibrosis compared with hypertension patients (P<0.05) and control (P<0.01). Transcriptomic analysis revealed that the focal adhesion pathway was significantly enriched in hearts from patients undergoing hemodialysis. Hearts from patients undergoing hemodialysis exhibited dysregulated components of the focal adhesion pathway including reduced β‐actin (P<0.01), β‐tubulin (P<0.01), vimentin (P<0.05), and increased expression of vinculin (P<0.05) compared with controls. Cytoskeletal adaptations in hearts from the hemodialysis group were associated with impaired mitochondrial bioenergetics, including dysregulated mitochondrial dynamics and fusion, and loss of cell survival pathways. Mechanistic studies revealed that cytoskeletal changes can be driven by uremic and metabolic abnormalities of chronic kidney disease, in vitro. Furthermore, focal adhesion kinase silencing via interference RNA suppressed major cytoskeletal proteins synergistically with mineral stressors found in chronic kidney disease in vitro. Conclusions: Myocardial failure in advanced chronic kidney disease is characterized by impairment of the cytoskeleton involving disruption of the focal adhesion pathway, mitochondrial failure, and loss of cell survival pathways.Item Plasma metabolites and physical function in patients undergoing hemodialysis(Springer Nature, 2024-04-10) Moorthi, Ranjani N.; Moe, Sharon M.; O’Connell, Thomas; Dickinson, Stephanie; Kalim, Sahir; Thadhani, Ravi; Clish, Clary B.; Shafi, Tariq; Rhee, Eugene P.; Avin, Keith G.; Medicine, School of MedicineImpaired physical function contributes to falls, fractures, and mortality among patients undergoing dialysis. Using a metabolomic approach, we identified metabolite alterations and effect size-based composite scores for constructs of impaired gait speed and grip strength. 108 participants incident to dialysis had targeted plasma metabolomics via liquid chromatography-mass spectrometry and physical function assessed (i.e., 4 m walk, handgrip strength). Physical function measures were categorized as above/ below median, with grip utilizing sex-based medians. To develop composite scores, metabolites were identified via Wilcoxon uncorrected p < 0.05 and effect size > 0.40. Receiver operating characteristic analyses tested whether scores differentiated between above/below function groups. Participants were 54% male, 77% Black and 53 ± 14 y with dialysis vintage of 101 ± 50 days. Median (IQR) grip strength was 35.5 (11.1) kg (males) and 20 (8.4) kg (females); median gait speed was 0.82 (0.34) m/s. Of 246 measured metabolites, composite scores were composed of 22 and 12 metabolites for grip strength and gait speed, respectively. Area under the curve for metabolite composite was 0.88 (gait) and 0.911 (grip). Composite scores of physical function performed better than clinical parameters alone in patients on dialysis. These results provide potential pathways for interventions and needed validation in an independent cohort.