- Browse by Author
Browsing by Author "Kalgaonkar, Priyank"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item CondenseNeXtV2: Light-Weight Modern Image Classifier Utilizing Self-Querying Augmentation Policies(MDPI, 2022) Kalgaonkar, Priyank; El-Sharkawy, Mohamed; Electrical and Computer Engineering, School of Engineering and TechnologyArtificial Intelligence (AI) combines computer science and robust datasets to mimic natural intelligence demonstrated by human beings to aid in problem-solving and decision-making involving consciousness up to a certain extent. From Apple’s virtual personal assistant, Siri, to Tesla’s self-driving cars, research and development in the field of AI is progressing rapidly along with privacy concerns surrounding the usage and storage of user data on external servers which has further fueled the need of modern ultra-efficient AI networks and algorithms. The scope of the work presented within this paper focuses on introducing a modern image classifier which is a light-weight and ultra-efficient CNN intended to be deployed on local embedded systems, also known as edge devices, for general-purpose usage. This work is an extension of the award-winning paper entitled ‘CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded Systems’ published for the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). The proposed neural network dubbed CondenseNeXtV2 utilizes a new self-querying augmentation policy technique on the target dataset along with adaption to the latest version of PyTorch framework and activation functions resulting in improved efficiency in image classification computation and accuracy. Finally, we deploy the trained weights of CondenseNeXtV2 on NXP BlueBox which is an edge device designed to serve as a development platform for self-driving cars, and conclusions will be extrapolated accordingly.Item EffCNet: An Efficient CondenseNet for Image Classification on NXP BlueBox(Science Publishing Group, 2021) Kalgaonkar, Priyank; El-Sharkawy, Mohamed; Electrical and Computer Engineering, Purdue School of Engineering and TechnologyIntelligent edge devices with built-in processors vary widely in terms of capability and physical form to perform advanced Computer Vision (CV) tasks such as image classification and object detection, for example. With constant advances in the field of autonomous cars and UAVs, embedded systems and mobile devices, there has been an ever-growing demand for extremely efficient Artificial Neural Networks (ANN) for real-time inference on these smart edge devices with constrained computational resources. With unreliable network connections in remote regions and an added complexity of data transmission, it is of an utmost importance to capture and process data locally instead of sending the data to cloud servers for remote processing. Edge devices on the other hand, offer limited processing power due to their inexpensive hardware, and limited cooling and computational resources. In this paper, we propose a novel deep convolutional neural network architecture called EffCNet which is an improved and an efficient version of CondenseNet Convolutional Neural Network (CNN) for edge devices utilizing self-querying data augmentation and depthwise separable convolutional strategies to improve real-time inference performance as well as reduce the final trained model size, trainable parameters, and Floating-Point Operations (FLOPs) of EffCNet CNN. Furthermore, extensive supervised image classification analyses are conducted on two benchmarking datasets: CIFAR-10 and CIFAR-100, to verify real-time inference performance of our proposed CNN. Finally, we deploy these trained weights on NXP BlueBox which is an intelligent edge development platform designed for self-driving vehicles and UAVs, and conclusions will be extrapolated accordingly.Item Image Classification with CondenseNeXt for ARM-Based Computing Platforms(IEEE, 2021-04) Kalgaonkar, Priyank; El-Sharkawy, Mohamed; Electrical and Computer Engineering, School of Engineering and TechnologyIn this paper, we demonstrate the implementation of our ultra-efficient deep convolutional neural network architecture: CondenseNeXt on NXP BlueBox, an autonomous driving development platform developed for self-driving vehicles. We show that CondenseNeXt is remarkably efficient in terms of FLOPs, designed for ARM-based embedded computing platforms with limited computational resources and can perform image classification without the need of a CUDA enabled GPU. CondenseNeXt utilizes the state-of-the-art depthwise separable convolution and model compression techniques to achieve a remarkable computational efficiency. Extensive analyses are conducted on CIFAR-10, CIFAR-100 and ImageNet datasets to verify the performance of Con-denseNeXt Convolutional Neural Network (CNN) architecture. It achieves state-of-the-art image classification performance on three benchmark datasets including CIFAR-10 (4.79% top-1 error), CIFAR-100 (21.98% top-1 error) and ImageNet (7.91% single model, single crop top-5 error). CondenseNeXt achieves final trained model size improvement of 2.9+ MB and up to 59.98% reduction in forward FLOPs compared to CondenseNet and can perform image classification on ARM-Based computing platforms without needing a CUDA enabled GPU support, with outstanding efficiency.Item NextDet: Efficient Sparse-to-Dense Object Detection with Attentive Feature Aggregation(MDPI, 2022-11-28) Kalgaonkar, Priyank; El-Sharkawy, Mohamed; Electrical and Computer Engineering, School of Engineering and TechnologyObject detection is a computer vision task of detecting instances of objects of a certain class, identifying types of objects, determining its location, and accurately labelling them in an input image or a video. The scope of the work presented within this paper proposes a modern object detection network called NextDet to efficiently detect objects of multiple classes which utilizes CondenseNeXt, an award-winning lightweight image classification convolutional neural network algorithm with reduced number of FLOPs and parameters as the backbone, to efficiently extract and aggregate image features at different granularities in addition to other novel and modified strategies such as attentive feature aggregation in the head, to perform object detection and draw bounding boxes around the detected objects. Extensive experiments and ablation tests, as outlined in this paper, are performed on Argoverse-HD and COCO datasets, which provide numerous temporarily sparse to dense annotated images, demonstrate that the proposed object detection algorithm with CondenseNeXt as the backbone result in an increase in mean Average Precision (mAP) performance and interpretability on Argoverse-HD’s monocular ego-vehicle camera captured scenarios by up to 17.39% as well as COCO’s large set of images of everyday scenes of real-world common objects by up to 14.62%.