- Browse by Author
Browsing by Author "Jones, David"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Discovery and characterization of small molecules that target the Ral GTPase(Nature Publishing Group, 2014-11-20) Yan, Chao; Liu, Degang; Li, Liwei; Wempe, Michael F.; Guin, Sunny; Khanna, May; Meier, Jeremy; Hoffman, Brenton; Owens, Charles; Wysoczynski, Christina L.; Nitz, Matthew D.; Knabe, Eric W.; Brautigan, David L.; Paschal, Bryce M.; Schwartz, Martin A.; Jones, David; Ross, David; Meroueh, Samy O.; Theodorescu, Dan; Department of Biochemistry & Molecular Biology, IU School of MedicineThe Ras-like GTPases RalA and B are important drivers of tumor growth and metastasis. Chemicals that block Ral function would be valuable as research tools and for cancer therapeutics. Here, we used protein structure analysis and virtual screening to identify drug-like molecules that bind a site on the GDP-form of Ral. Compounds RBC6, RBC8 and RBC10 inhibited Ral binding to its effector RalBP1, Ral-mediated cell spreading in murine fibroblasts and anchorage-independent growth of human cancer cell lines. Binding of RBC8 derivative BQU57 to RalB was confirmed by isothermal titration calorimetry, surface plasma resonance and 15N-HSQC NMR. RBC8 and BQU57 show selectivity for Ral relative to Ras or Rho and inhibit xenograft tumor growth similar to depletion of Ral by siRNA. Our results show the utility of structure-based discovery for development of therapeutics for Ral-dependent cancers.Item PAK1 inhibition reduces tumor size and extends the lifespan of mice in a genetically engineered mouse model of Neurofibromatosis Type 2 (NF2)(Oxford University Press, 2021) Hawley, Eric; Gehlhausen, Jeffrey; Karchugina, Sofiia; Chow, Hoi-Yee; Araiza-Olivera, Daniela; Radu, Maria; Smith, Abbi; Burks, Ciersten; Jiang, Li; Li, Xiaohong; Bessler, Waylan; Masters, Andrea; Edwards, Donna; Burgin, Callie; Jones, David; Yates, Charles; Clapp, D. Wade; Chernoff, Jonathan; Park, Su-Jung; Biochemistry and Molecular Biology, School of MedicineNeurofibromatosis Type II (NF2) is an autosomal dominant cancer predisposition syndrome in which germline haploinsufficiency at the NF2 gene confers a greatly increased propensity for tumor development arising from tissues of neural crest derived origin. NF2 encodes the tumor suppressor, Merlin, and its biochemical function is incompletely understood. One well-established function of Merlin is as a negative regulator of group A serine/threonine p21-activated kinases (PAKs). In these studies we explore the role of PAK1 and its closely related paralog, PAK2, both pharmacologically and genetically, in Merlin-deficient Schwann cells and in a genetically engineered mouse model (GEMM) that develops spontaneous vestibular and spinal schwannomas. We demonstrate that PAK1 and PAK2 are both hyper activated in Merlin-deficient murine schwannomas. In preclinical trials, a pan Group A PAK inhibitor, FRAX-1036, transiently reduced PAK1 and PAK2 phosphorylation in vitro, but had insignificant efficacy in vivo. NVS-PAK1-1, a PAK1 selective inhibitor, had a greater but still minimal effect on our GEMM phenotype. However, genetic ablation of Pak1 but not Pak2 reduced tumor formation in our NF2 GEMM. Moreover, germline genetic deletion of Pak1 was well tolerated, while conditional deletion of Pak2 in Schwann cells resulted in significant morbidity and mortality. These data support the further development of PAK1-specific small molecule inhibitors and the therapeutic targeting of PAK1 in vestibular schwannomas and argue against PAK1 and PAK2 existing as functionally redundant protein isoforms in Schwann cells.Item Relationship between Differential Hepatic microRNA Expression and Decreased Hepatic Cytochrome P450 3A Activity in Cirrhosis(2013-09) Vuppalanchi, Raj; Liang, Tiebing; Goswami, Chirayu Pankaj; Nalamasu, Rohit; Li, Lang; Jones, David; Wei, Rongrong; Liu, Wanqing; Sarasani, Vishal; Janga, Sarath Chandra; Chalasani, NagaBackground and Aim Liver cirrhosis is associated with decreased hepatic cytochrome P4503A (CYP3A) activity but the pathogenesis of this phenomenon is not well elucidated. In this study, we examined if certain microRNAs (miRNA) are associated with decreased hepatic CYP3A activity in cirrhosis. Methods Hepatic CYP3A activity and miRNA microarray expression profiles were measured in cirrhotic (n=28) and normal (n=12) liver tissue. Hepatic CYP3A activity was measured via midazolam hydroxylation in human liver microsomes. Additionally, hepatic CYP3A4 protein concentration and the expression of CYP3A4 mRNA were measured. Analyses were conducted to identify miRNAs which were differentially expressed between two groups but also were significantly associated with lower hepatic CYP3A activity. Results Hepatic CYP3A activity in cirrhotic livers was 1.7-fold lower than in the normal livers (0.28 ± 0.06 vs. 0.47 ± 0.07mL* min-1*mg protein-1 (mean ± SEM), P=0.02). Six microRNAs (miR-155, miR-454, miR-582-5p, let-7f-1*, miR-181d, and miR-500) had >1.2-fold increase in cirrhotic livers and also had significant negative correlation with hepatic CYP3A activity (range of r = -0.44 to -0.52, P <0.05). Notably, miR-155, a known regulator of liver inflammation, had the highest fold increase in cirrhotic livers (2.2-fold, P=4.16E-08) and significantly correlated with hepatic CYP3A activity (r=-0.50, P=0.017). The relative expression (2-ΔΔCt mean ± SEM) of hepatic CYP3A4 mRNA was significantly higher in cirrhotic livers (21.76 ± 2.65 vs. 5.91 ± 1.29, P=2.04E-07) but their levels did not significantly correlate with hepatic CYP3A activity (r=-0.43, P=0.08). Conclusion The strong association between certain miRNAs, notably miR-155, and lower hepatic CYP3A activity suggest that altered miRNA expression may regulate hepatic CYP3A activity.