- Browse by Author
Browsing by Author "Jones, Alan S."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Characterization of tensile, creep, and fatigue properties of 3D printed Acrylonitrile Butadiene Styrene(2016-08) Zhang, Hanyin; Zhang, Jing; Ryu, Jong Eun; Jones, Alan S.; Anwar, SohelAcrylonitrile Butadiene Styrene (ABS) is the most widely used thermoplastics in 3D printing for making models, prototypes, patterns, tools and end-use parts. However, there is a lack of systematic understanding of the mechanical properties of 3D printed ABS components, including orientation-dependent tensile strength, creep, and fatigue properties. These mechanical properties are critically needed for design and application of 3D printed components. The main objective of this research is to systematically characterize key mechanical properties of 3D printed ABS components, including tensile, creep, and fatigue properties. Additionally, the eff ects of printing orientation on the mechanical prop- erties are investigated. There are two research approaches employed in the thesis: rst, experimental investigation of the tensile, creep, and fatigue properties of the 3D printed ABS components; second, laminate based finite-element modeling of tensile test to understand the stress distributions in different printing layers. The major conclusions of the thesis work are summarized as follows. The tensile test experiments show that the 0 printing orientation has the highest Young's modulus, 1.81 GPa, and ultimate strength, 224 MPa. The tensile test simulation shows a similar Young's modulus as the experiment in elastic region, indicating the robustness of laminate based finite element model. In the creep test, the 90 printing orientation has the lowest k value of 0.2 in the plastics creep model, suggesting the 90 is the most creep resistant among 0 , 45 , and 90 printing orientations. In the fatigue test, the average cycle number under load of 30 N is 3796 revolutions. The average cycle number decreases to 128 revolutions when the load is below 60N. Using the Paris Law, with the crack size of 0.75 mm long and stress intensity factor is varied from 352 to 700 MN -m^3/2 , the predicted fatigue crack growth rate is 0.0341 mm/cycle.Item Design of Self-supported 3D Printed Parts for Fused Deposition Modeling(2016) Lischke, Fabian; Tovar, Andres; Anwar, Sohel; Jones, Alan S.One of the primary challenges faced in Additive Manufacturing (AM) is reducing the overall cost and printing time. A critical factor in cost and time reduction is post-processing of 3D printed (3DP) parts, which includes removing support structures. Support is needed to prevent the collapse of the part or certain areas under its own weight during the 3D printing process. Currently, the design of self-supported 3DP parts follows experimental trials. A trial and error process is needed to produce high quality parts by Fused Depositing Modeling (FDM). An example for a chamfer angle, is the common use of 45 degree angle in the AM process. Surfaces that are more flat show defects than inclined surfaces, and therefore a numerical model is needed. The model can predict the problematic areas at a print, reducing the experimental prints and providing a higher number of usable parts. Physical-based models have not been established due to the generally unknown properties of the material during the AM process. With simulations it is possible to simulate the part at different temperatures with a variety of other parameters that have influence on the behavior of the model. In this research, analytic calculations and physical tests are carried out to determine the material properties of the thermoplastic polymer Acrylonitrile - Butadiene - Styrene (ABS) for FDM at the time of extrusion. This means that the ABS is going to be extruded at 200C to 245C and is a viscus material during part construction. Using the results from the physical and analytical models, i.e., Timoshenko’s modified beam theory for micro structures, a numerical material model is established to simulate the filament deformation once it is deposited onto the part. Experiments were also used to find the threshold for different geometric specifications, which could then be applied to the numerical model to improve the accuracy of the simulation. The result of the nonlinear finite element analysis is compared to experiments to show the correlation between the prediction of deflection in simulation and the actual deflection measured in physical experiments. A case study was conducted using an application that optimizes topology of complex geometries. After modeling and simulating the optimized part, areas of defect and errors were determined in the simulation, then verified and and measured with actual 3D prints.Item High Performance Thermal Barrier Coatings on Additively Manufactured Nickel Base Superalloy Substrates(2023-08) Dube, Tejesh Charles; Zhang, Jing; Jones, Alan S.; Koo, Dan Daehyun; Yang, ShengfengThermal barrier coatings (TBCs) made of low-thermal-conductivity ceramic topcoat, metallic bond coat and metallic substrate, have been extensively used in gas turbine engines for thermal protection. Recently, additive manufacturing (AM) or 3D printing techniques have emerged as promising manufacturing techniques to fabricate engine components. The motivation of the thesis is that currently, application of TBCs on AM’ed metallic substrate is still in its infancy, which hinders the realization of its full potential. The goal of this thesis is to understand the processing-structure-property relationship in thermal barrier coating deposited on AM’ed superalloys. The APS method is used to deposit 7YSZ as the topcoat and NiCrAlY as the bond coat on TruForm 718 substrates fabricated using the direct metal laser sintering (DMLS) method. For comparison, another TBC system with the same topcoat and bond coat is deposited using APS on wrought 718 substrates. For thermomechanical property characterizations, thermal cycling, thermal shock (TS) and jet engine thermal shock (JETS) tests are performed for both TBC systems to evaluate thermal durability. Microhardness and elastic modulus at each layer and respective interfaces are also evaluated for both systems. Additionally, the microstructure and elemental composition are thoroughly studied to understand the cause for better performance of one system over the other. Both TBC systems showed similar performance during the thermal cycling and JETS test but TBC systems with AM substrates showed enhanced thermal durability especially in the case of the more aggressive thermal shock test. The TBC sample with AM substrate failed after 105 thermal shock cycles whereas the one with wrought substrate endured a maximum of 85 cycles after which it suffered topcoat delamination. The AM substrates also demonstrated an overall higher microhardness and elastic modulus except for post thermal cycling condition where it slightly underperformed. This study successfully demonstrated the use of AM built substrates for an improved TBC system and validated the enhanced thermal durability and mechanical properties of such a system. A modified YSZ TBC architecture with an intermediate Ti3C2 MXene layer is proposed to improve the interfacial adhesion at the topcoat/bond coat interface to improve the thermal durability of YSZ TBC systems. First principles calculations are conducted to study the interfacial adhesion energy in the modified and conventional YSZ TBC systems. The results show enhanced adhesion at the bond coat/MXene interface. At the topcoat/MXene interface, the adhesion energy is similar to the adhesion energy between the topcoat and bond coat in a conventional YSZ TBC system. An alternative route is proposed for the fabrication of YSZ TBC on nickel base superalloy substrates by using the SPS technology. SPS offers a one-step fabrication process with faster production time and reduced production cost since all the layers of the TBC system are fabricated simultaneously. Two different TBC systems are processed using the same heating protocol. The first system is a conventional TBC system with 8YSZ topcoat, NiCoCrAlY bond coat and nickel base superalloy substrate. The second system is similar to the first but with an addition of Ti3C2 MXene layer between the topcoat and the bond coat. Based on the first principles study, addition of Ti3C2 layer enhances the adhesion strength of the topcoat/bond coat interface, an area which is highly susceptible to spallation. Further tests such as thermal cycling and thermal shock along with the evaluation of mechanical properties would be carried out for these samples in future studies to support our hypothesis.Item Indentation protocol to determine viscoelastic properties of cartilage before and after crosslinking(2017-12) Chandwadkar, Shaunak A.; Wagner, Diane S.; Jones, Alan S.; Ryu, Jong EOsteoarthritis affects millions of people of different age groups around the world. With very few treatment options and the highly restricted capacity of cartilage to repair, new treatment options are needed. The objective of this thesis was to develop a repeatable cartilage testing protocol, which could be used to test cartilage properties and determine if crosslinking can be used as a potential treatment for osteoarthritis. Previous studies have shown CASPc can be used as a photo-sensitizer to obtain collagen crosslinking through a secondary process. The ability to perform cartilage crosslinking by light-activation, which could be done arthroscopically is especially attractive as this would allow the surgery to be minimally invasive. The indentation protocol developed for a stress-relaxation test was able to achieve 95% repeatability, meaning the error in determining cartilage properties stayed within 5% of the average for tests performed at different times. Results of photo-chemical crosslinking demonstrated no change in cartilage stiffness when compared with control specimens. The spherical indenter chosen to indent the cartilage was suspected to apply less strain on cartilage as a result of its profile, which only compressed the cartilage instead of stretching its surface. The stiffness of CASPc control specimen was observed to be increasing when compared with no-CASPc control, as a result of added viscosity of CASPc solution. This elevated stiffness was observed to diminish over time due to the diffusion of CASPc from cartilage.Item MODELING THE INTERDEPENDENCE OF ELECTROCHEMICAL AND MECHANICAL PROPERTIES IN PER SULFONATE ACID PROTON EXCHANGE MEMBRANES(2011-05) Malladi, Jaya Sangita; Jones, Alan S.; Chen, Jie; Xie, JianProton exchange membrane fuel cells (PEMFC’s) offer an attractive alternative energy resource over traditional fossil fuels. The advantages such as high power density, relatively quick start-up, rapid response to varying loads and low operating temperatures make it a preferred technology option compared to other alternative energy sources. Nafion® by DuPont plays an integral role in the success of PEM fuel cells due to its high proton conductivity and high chemical and thermal stability. This research project aims to study the effect of mechanical and hygro-thermal stresses on the mechanical performance and proton conductivity of the membrane by subjecting it to realistic operating conditions such as those encountered in an automobile. In this thesis, the time-dependent behavior of the membrane has been modeled using a Prony series and the change in the conductivity due to mechanical loading was experimentally measured. The modeling of both electrochemical and mechanical properties can further be used in studying the degradation properties of the membrane and should guide the development of better membrane materials. Visco-elastic stress relaxation theory has been used in modeling the time-dependent behavior of the specimen. The EIS spectrum has been analyzed using a non-linear least squares method and an equivalent circuit method was also used to fit the spectra. This project was conducted in three phases. In the first phase a novel test facility was built to perform the experiments. A conductivity measurement test cell that measured the proton conductivity of a membrane was modeled and manufactured. The second phase included the design of different experiments that helped in modeling the interdependence of electrochemical and mechanical properties of the membrane. In this process, three series of experiments that tested the electrochemical and mechanical properties of the specimen were conducted. The membrane was held at constant strain and the through plane impedance was measured at different times during the test, specifically before and after stretching at ambient and varying environmental conditions. The membrane was also subjected to both mechanical and hygro-thermal loading conditions during the test. In the third phase, time-dependant mathematical model for the changes in the material properties were developed. The experimental apparatus thus tested the mechanical and electrochemical properties of the membrane simultaneously while the specimen was being subjected to constant mechanical and varying hygro-thermal conditions. Since the testing method is a novel procedure, the reliability and repeatability of the experimental facility has been verified before conducting the experiments. The experimental apparatus can further be used to test the membrane at varying strain rates and different hygro-thermal loading conditions in a consistent manner. The model developed can be used to analyze the degradation behavior of membrane and also to build better fabrication methods and membrane materials in future.Item Towards commercialization of self-healing technology in epoxy coating(2014) Ye, Lujie; Jones, Alan S.; Zhang, Jing; Zhu, Likun; Chen, JieThis work is focused on developing viable self-healing coatings, especially considering the viability of the coating in a commercial context. With this in mind, finding low cost healing agents, with satisfactory healing and mechanical properties as well as adapting the healing system for use in coatings was required. Seven potential healing agents were evaluated and an air-drying triglyceride (linseed oil) was identified as the candidate healing agent. Different encapsulation techniques were evaluated and ureaformaldehyde microcapsules were chosen as the candidate encapsulation technique. Self-healing coatings were fabricated using urea-formaldehyde encapsulated linseed oil. EIS, SEM and TGA technologies were used to evaluate mechanical performance, corrosion resistance, and self-healing performance.