- Browse by Author
Browsing by Author "Joll, Jeffery E."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Dose analysis of photobiomodulation therapy on osteoblast, osteoclast, and osteocyte(SPIE, 2018-07) Na, Sungsoo; TruongVo, ThucNhi; Jiang, Feifei; Joll, Jeffery E.; Guo, Yunxia; Utreja, Achint; Chen, Jie; Biomedical Engineering, School of Engineering and TechnologyThe objective of this study was to evaluate the effects of varying light doses on the viability and cellular activity of osteoblasts, osteocytes, and osteoclasts. A light application device was developed to apply 940-nm wavelength light from light-emitting diodes on three cultured cells, MC3T3-E1, MLO-A5, and RANKL-treated RAW264.7 cells. The doses (energy density) on cells were 0, 1, 5, and 7.5 J / cm2. The corresponding light power densities at the cell site were 0, 1.67, 8.33, and 12.5 mW / cm2, respectively, and the duration was 10 min. The results showed that the three cell types respond differently to light and their responses were dose dependent. Low-dose treatment (1 J / cm2) enhanced osteoblast proliferation, osteoclast differentiation, and osteoclastic bone resorption activity. Osteocyte proliferation was not affected by both low- and high-dose (5 J / cm2) treatments. While 1 J / cm2 did not affect viability of all three cell types, 5 J / cm2 significantly decreased viability of osteocytes and osteoclasts. Osteoblast viability was negatively impacted by the higher dose (7.5 J / cm2). The findings suggest that optimal doses exist for osteoblast and osteoclast, which can stimulate cell activities, and there is a safe dose range for each type of cell tested.Item Mechanical Effects of Fine-Wire Climbing on the Hindlimb Skeleton of Mice(Office of the Vice Chancellor for Research, 2015-04-17) Joll, Jeffery E.; Vickery, Ben; Rupert, Joseph E.; Biro, Kelly C.; Wallace, Joseph M.; Byron, Craig D.; Organ, Jason M.High-impact exercise (running/jumping) can stimulate multiple anabolic responses (increased trabecular bone volume, BV/TV) in the skeleton, but is also linked to an increased incidence of skeletal fracture. Thus, it is not an appropriate treatment for patients with elevated fracture risks. However, multi-directional offaxis mechanical loading can also elicit anabolic responses, even when magnitudes are relatively low. This represents a potential alternative to high-impact exercise for improving skeletal mechanical properties. To test this hypothesis, we raised twelve weanling female C57BL/6 mice to 4 months of age in custom enclosures that prevent (control) or require (experimental) manual and pedal grasping while balancing and climbing above narrow wire substrates. At sacrifice, we measured whole mouse bone density (DEXA) and performed architectural (μCT) and mechanical (4-pt bending) analyses of the femur and tibia. Body mass was similar between groups, although exercised mice were leaner (-35% fat mass). Bone mineral density was also similar, while bone mineral content was increased (+7%) in the exercised mice. Femoral midshaft polar moment of inertia was similar between groups, but exercised mice had lower BV/TV (-46%) of the distal femur and greater trabecular spacing (+21%). Exercised femora showed more total displacement (+58%) and post yield displacement (+115%) in bending than controls, and increased material toughness (+40%). Patterns were similar for the tibia. Mechanical data are consistent with high-impact exercise studies, but architectural data are not. Together they suggest that our exercise model may improve bone mechanical properties by redistributing mineral within the skeleton, and not by increasing net bone formation.Item Reduced skeletal muscle function is associated with decreased fiber cross-sectional area in the Cy/+ rat model of progressive kidney disease(Oxford University Press, 2016-02) Organ, Jason M.; Srisuwananukorn, Andrew; Price, Paige; Joll, Jeffery E.; Biro, Kelly C.; Rupert, Joseph E.; Chen, Neal X.; Avin, Keith G.; Moe, Sharon M.; Allen, Matthew R.; Department of Anatomy & Cell Biology, IU School of MedicineBACKGROUND: The combination of skeletal muscle wasting and compromised function plays a role in the health decline commonly observed in chronic kidney disease (CKD) patients, but the pathophysiology of muscle mass/strength changes remains unclear. The purpose of this study was to characterize muscle properties in the Cy/+ rat model of spontaneously progressive CKD. METHODS: Leg muscle function and serum biochemistry of male Cy/+ (CKD) rats and their nonaffected littermates (NLs) were assessed in vivo at 25, 30 and 35 weeks of age. Architecture and histology of extensor digitorum longus (EDL) and soleus (SOL) muscles were assessed ex vivo at the conclusion of the experiment. We tested the hypothesis that animals with CKD have progressive loss of muscle function, and that this functional deficit is associated with loss of muscle mass and quality. RESULTS: Thirty-five-week-old CKD rats produced significantly lower maximum torque in ankle dorsiflexion and shorter time to maximum torque, and longer half relaxation time in dorsiflexion and plantarflexion compared with NL rats. Peak dorsiflexion torque (but not plantarflexion torque) in CKD remained steady from 25 to 35 weeks, while in NL rats, peak torque increased. Mass, physiologic cross-sectional area (CSA) and fiber-type (myosin heavy chain isoform) proportions of EDL and SOL were not different between CKD and NL. However, the EDL of CKD rats showed reduced CSAs in all fiber types, while only MyHC-1 fibers were decreased in area in the SOL. CONCLUSIONS: The results of this study demonstrate that muscle function progressively declines in the Cy/+ rat model of CKD. Because whole muscle mass and architecture do not vary between CKD and NL, but CKD muscles show reduction in individual fiber CSA, our data suggest that the functional decline is related to increased muscle fiber atrophy.