ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Johnston, William"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Constructing invariant subspaces as kernels of commuting matrices
    (Elsevier, 2019-12) Cowen, Carl C.; Johnston, William; Wahl, Rebecca G.; Mathematical Sciences, School of Science
    Given an n n matrix A over C and an invariant subspace N, a straightforward formula constructs an n n matrix N that commutes with A and has N = kerN. For Q a matrix putting A into Jordan canonical form, J = Q􀀀1AQ, we get N = Q􀀀1M where M= ker(M) is an invariant subspace for J with M commuting with J. In the formula J = PZT􀀀1Pt, the matrices Z and T are m m and P is an n m row selection matrix. If N is a marked subspace, m = n and Z is an n n block diagonal matrix, and if N is not a marked subspace, then m > n and Z is an m m near-diagonal block matrix. Strikingly, each block of Z is a monomial of a nite-dimensional backward shift. Each possible form of Z is easily arranged in a lattice structure isomorphic to and thereby displaying the complete invariant subspace lattice L(A) for A.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University