ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Johnson, Sterling C."

Now showing 1 - 10 of 15
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Alzheimer’s Disease Plasma Biomarker Results from across 14 Alzheimer’s Disease Research Centers
    (Wiley, 2025-01-09) Russ, Kristen A.; Asthana, Sanjay; Johnson, Sterling C.; Wilson, Rachael E.; Craft, Suzanne; Register, Thomas C.; Lockhart, Samuel N.; Nairn, Angus C.; Strittmatter, Stephen M.; van Dyck, Christopher H.; Foroud, Tatiana M.; Dage, Jeffrey L.; Neurology, School of Medicine
    Background: The Alzheimer’s Disease Center Fluid Biomarker (ADCFB) Initiative samples are analyzed centrally at NCRAD for AD plasma biomarkers. When combining NACC accessible data from across centers, biofluid biomarker data must be evaluated carefully. This will become more critical with the implementation of disease modifying therapies. Methods: Beta amyloid 1‐42 (Aβ42) and beta amyloid 1‐40 (Aβ40) were analyzed utilizing the Neurology 4‐Plex E kits on a Quanterix Simoa HD‐X. All assays were performed according to manufacturer’s instructions. NACC data from participants 65 or older was combined with biomarker results into one data set. Samples with PET results from the same visit as the blood collection were utilized for this analysis (n=114). Results: Data for amyloid and tau PET was used along with Aβ42/40 ratios to assess the area under the curve (AUC) for this data set (Figure 1). Amyloid PET and Tau PET by Aβ42/40 ROC analysis including age and APOE4 carrier status showed lower than expected AUCs (both 0.72). A subset of data (n=90) was analyzed using participants that were not on any FDA‐approved drugs for AD. This had no effect on AUCs for amyloid or tau PET by Aβ42/40 ratios. Distribution of Aβ42/40 ratios across sites showed a single site had a subset of very high Aβ42/40 ratios (n=8) in comparison to other sites. After removal of the Aβ42/40 outliers from the specific site from the data set, diagnostic accuracies of Aβ42/40 for both Amyloid PET (AUC=0.77) and Tau PET (AUC=0.76) were increased. More investigation into the exact cause of the outliers is necessary, but Aβ42/40 elevations independent from other biomarkers have been seen in clinical trials of Solanezumab and some other Aβ targeting antibodies. Conclusion: To avoid errors in data analysis when using shared data, it is important to track clinical trial co‐enrollment and drug type within ADCs at NACC. As FDA‐approved treatments become available or co‐enrollment of AD drug trials at centers occurs, it is critical to carefully track participant variables and review biofluid biomarker data when it is being combined across centers or studies.
  • Loading...
    Thumbnail Image
    Item
    Amyloid PET predicts longitudinal functional and cognitive trajectories in a heterogeneous cohort
    (Wiley, 2025) Younes, Kyan; Johns, Emily; Young, Christina B.; Kennedy, Gabriel; Mukherjee, Shubhabrata; Vossler, Hillary A.; Winer, Joseph; Cody, Karly; Henderson, Victor W.; Poston, Kathleen L.; Betthauser, Tobey J.; Bevis, Bill; Brooks, William M.; Burns, Jeffrey M.; Coombes, Stephen A.; DeCarli, Charles; DiFilippo, Frank P.; Duara, Ranjan; Fan, Audrey P.; Gibbons, Laura E.; Golde, Todd; Johnson, Sterling C.; Lepping, Rebecca J.; Leverenz, James; McDougall, Sean; Rogalski, Emily; Sanders, Elizabeth; Pasaye, Joshua; Sridhar, Jaiashre; Saykin, Andrew J.; Sridharan, Anjali; Swerdlow, Russell; Trittschuh, Emily H.; Vaillancourt, David; Vidoni, Eric; Wang, Wei-En; Mez, Jesse; Hohman, Timothy J.; Tosun, Duygu; Biber, Sarah; Kukull, Walter A.; Crane, Paul K.; Mormino, Elizabeth C.; Radiology and Imaging Sciences, School of Medicine
    Introduction: Amyloid positron emission tomography (PET) is increasingly available for diagnosis of Alzheimer`s disease (AD); however, its practical implications in heterogenous cohorts are debated. Methods: Amyloid PET from 890 National Alzheimer`s Coordinating Center participants with up to 10 years post-PET follow up was analyzed. Cox proportional hazards and linear mixed models were used to investigate amyloid burden prediction of etiology and prospective functional status and cognitive decline. Results: Amyloid positivity was associated with progression from unimpaired to mild cognitive impairment and dementia. Amyloid burden in the unimpaired group was associated with lower initial memory levels and faster decline in memory, language, and global cognition. In the Impaired group, amyloid was associated with lower initial levels and faster decline for memory, language, executive function, and global cognition. Discussion: Amyloid burden is an important prognostic marker in a clinically heterogeneous cohort. Future work is needed to establish the proportion of decline driven by AD versus non-AD processes in the context of mixed pathology. Highlights: Our findings highlight the importance of amyloid positron emission tomography (PET) in heterogenous cohorts, including diverse demographics, clinical syndromes, and underlying etiologies. The results also provide evidence that higher amyloid levels were linked to functional progression from unimpaired cognition to mild cognitive impairment (MCI) and from MCI to dementia. In cognitively unimpaired individuals, higher amyloid burden was associated with poorer memory at baseline and subsequent declines in memory, language, and global cognition. Among individuals with cognitive impairment, amyloid burden was associated with worse initial memory, language, executive function, and global cognition, and faster declines over time.
  • Loading...
    Thumbnail Image
    Item
    Divergent Cortical Tau Positron Emission Tomography Patterns Among Patients With Preclinical Alzheimer Disease
    (American Medical Association, 2022) Young, Christina B.; Winer, Joseph R.; Younes, Kyan; Cody, Karly A.; Betthauser, Tobey J.; Johnson, Sterling C.; Schultz, Aaron; Sperling, Reisa A.; Greicius, Michael D.; Cobos, Inma; Poston, Kathleen L.; Mormino, Elizabeth C.; Alzheimer’s Disease Neuroimaging Initiative; Harvard Aging Brain Study; Radiology and Imaging Sciences, School of Medicine
    Importance: Characterization of early tau deposition in individuals with preclinical Alzheimer disease (AD) is critical for prevention trials that aim to select individuals at risk for AD and halt the progression of disease. Objective: To evaluate the prevalence of cortical tau positron emission tomography (PET) heterogeneity in a large cohort of clinically unimpaired older adults with elevated β-amyloid (A+). Design, setting, and participants: This cross-sectional study examined prerandomized tau PET, amyloid PET, structural magnetic resonance imaging, demographic, and cognitive data from the Anti-Amyloid Treatment in Asymptomatic AD (A4) Study from April 2014 to December 2017. Follow-up analyses used observational tau PET data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Harvard Aging Brain Study (HABS), and the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center (together hereinafter referred to as Wisconsin) to evaluate consistency. Participants were clinically unimpaired at the study visit closest to the tau PET scan and had available amyloid and tau PET data (A4 Study, n = 447; ADNI, n = 433; HABS, n = 190; and Wisconsin, n = 328). No participants who met eligibility criteria were excluded. Data were analyzed from May 11, 2021, to January 25, 2022. Main outcomes and measures: Individuals with preclinical AD with heterogeneous cortical tau PET patterns (A+T cortical+) were identified by examining asymmetrical cortical tau signal and disproportionate cortical tau signal relative to medial temporal lobe (MTL) tau. Voxelwise tau patterns, amyloid, neurodegeneration, cognition, and demographic characteristics were examined. Results: The 447 A4 participants (A+ group, 392; and normal β-amyloid group, 55), with a mean (SD) age of 71.8 (4.8) years, included 239 women (54%). A total of 36 individuals in the A+ group (9% of the A+ group) exhibited heterogeneous cortical tau patterns and were further categorized into 3 subtypes: asymmetrical left, precuneus dominant, and asymmetrical right. A total of 116 individuals in the A+ group (30% of the A+ group) showed elevated MTL tau (A+T MTL+). Individuals in the A+T cortical+ group were younger than those in the A+T MTL+ group (t61.867 = -2.597; P = .03). Across the A+T cortical+ and A+T MTL+ groups, increased regional tau was associated with reduced hippocampal volume and MTL thickness but not with cortical thickness. Memory scores were comparable between the A+T cortical+ and A+T MTL+ groups, whereas executive functioning scores were lower for the A+T cortical+ group than for the A+T MTL+ group. The prevalence of the A+T cortical+ group and tau patterns within the A+T cortical+ group were consistent in ADNI, HABS, and Wisconsin. Conclusions and relevance: This study suggests that early tau deposition may follow multiple trajectories during preclinical AD and may involve several cortical regions. Staging procedures, especially those based on neuropathology, that assume a uniform trajectory across individuals are insufficient for disease monitoring with tau imaging.
  • Loading...
    Thumbnail Image
    Item
    Evaluating the association between APOE genotypes and cognitive resilience in SuperAgers
    (Wiley, 2025-01-03) Durant, Alaina; Mukherjee, Shubhabrata; Lee, Michael L.; Choi, Seo-Eun; Scollard, Phoebe; Trittschuh, Emily H.; Mez, Jesse; Bush, William S.; Kunkle, Brian W.; Naj, Adam C.; Gifford, Katherine A.; Cuccaro, Michael L.; Cruchaga, Carlos; Hassenstab, Jason J.; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Wang, Li-San; Haines, Jonathan L.; Jefferson, Angela L.; Kukull, Walter A.; Keene, C. Dirk; Saykin, Andrew J.; Thompson, Paul M.; Martin, Eden R.; Bennett, David A.; Barnes, Lisa L.; Schneider, Julie A.; Albert, Marilyn S.; Johnson, Sterling C.; Engelman, Corinne D.; Mayeux, Richard; Vardarajan, Badri N.; Crane, Paul K.; Dumitrescu, Logan C.; Hohman, Timothy J.; Gaynor, Leslie S.; The Alzheimer’s Disease Neuroimaging Initiative (ADNI); Alzheimer’s Disease Genetics Consortium (ADGC); The Alzheimer’s Disease Sequencing Project (ADSP); Medical and Molecular Genetics, School of Medicine
    Background: “SuperAgers” are older adults (ages 80+) whose cognitive performance resembles that of adults in their 50s to mid‐60s. Factors underlying their exemplary aging are underexplored in large, racially diverse cohorts. Using eight cohorts, we investigated the frequency of APOE genotypes in SuperAgers compared to middle‐aged and older adults. Method: Harmonized, longitudinal memory, executive function, and language scores in Non‐Hispanic White (NHW) and Non‐Hispanic Black (NHB) participants were obtained from the ADSP Phenotype Harmonization Consortium. Scores were age‐ and sex‐adjusted. SuperAgers (NHW = 1,625; NHB = 106) included individuals 80+ years of age with a memory score equal to or exceeding individuals aged 50‐64 and language and executive function domain scores within normal limits who remain cognitively normal across visits. SuperAgers were compared to Alzheimer’s disease (AD) cases (NHW = 8,400; NHB = 925) and cognitively normal controls (NHW = 7,355; NHB = 1,305), as well as age‐defined subgroups (Young = ages 50‐64, Older = ages 65‐79, Oldest‐Old = age 80+). We performed binary logistic regression analyses comparing APOE‐ε2 and APOE‐ε4 alleles (0 = none, 1 = 1+ alleles present) among SuperAgers and their counterparts, covarying for sex and education. We corrected for multiple comparisons using the Benjamini‐Hochberg procedure. Results: Across racial groups, SuperAgers had significantly higher proportions with APOE‐ε2 alleles and lower proportions with APOE‐ε4 alleles compared to cases (Table 1, Figure 1). Similar differences were observed between SuperAgers and Young and Old Controls, although differences were restricted to APOE‐ε4 in NHB comparisons. NHW SuperAgers had lower proportions with APOE‐ε4 alleles compared to Oldest‐Old Controls; APOE‐ε2 proportions did not differ. Conclusion: Within our large, harmonized cohort, larger proportions of SuperAgers had APOE‐ε2 alleles and smaller proportions had APOE‐ε4 alleles than AD cases across both NHW and NHB participants. Crucially, higher proportions of NHW SuperAgers had APOE‐ε2 alleles than younger controls (ages<80) and lower proportions had APOE‐ε4 alleles than all controls including age‐matched controls (ages 80+). This work provides the strongest evidence to date that APOE is associated with SuperAging. APOE‐ε2 did not differentiate NHB SuperAgers from controls nor APOE‐ε4 from other oldest‐old adults in present analyses. Future work will extend to whole genome analysis to identify novel genomic drivers of SuperAging.
  • Loading...
    Thumbnail Image
    Item
    Evaluating the association of APOE genotype and cognitive resilience in SuperAgers
    (medRxiv, 2025-01-07) Durant, Alaina; Mukherjee, Shubhabrata; Lee, Michael L.; Choi, Seo-Eun; Scollard, Phoebe; Klinedinst, Brandon S.; Trittschuh, Emily H.; Mez, Jesse; Farrer, Lindsay A.; Gifford, Katherine A.; Cruchaga, Carlos; Hassenstab, Jason; Naj, Adam C.; Wang, Li-San; Johnson, Sterling C.; Engelman, Corinne D.; Kukull, Walter A.; Keene, C. Dirk; Saykin, Andrew J.; Cuccaro, Michael L.; Kunkle, Brian W.; Pericak-Vance, Margaret A.; Martin, Eden R.; Bennett, David A.; Barnes, Lisa L.; Schneider, Julie A.; Bush, William S.; Haines, Jonathan L.; Mayeux, Richard; Vardarajan, Badri N.; Albert, Marilyn S.; Thompson, Paul M.; Jefferson, Angela L.; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Alzheimer’s Disease Genetics Consortium (ADGC); The Alzheimer’s Disease Sequencing Project (ADSP); Crane, Paul K.; Dumitrescu, Logan; Archer, Derek B.; Hohman, Timothy J.; Gaynor, Leslie S.; Radiology and Imaging Sciences, School of Medicine
    Importance: "SuperAgers" are oldest-old adults (ages 80+) whose memory performance resembles that of adults in their 50s to mid-60s. Factors underlying their exemplary memory are underexplored in large, racially diverse cohorts. Objective: To determine the frequency of APOE genotypes in non-Hispanic Black and non-Hispanic White SuperAgers compared to middle-aged (ages 50-64), old (ages 65-79), and oldest-old (ages 80+) controls and Alzheimer's disease (AD) dementia cases. Design: This multicohort study selected data from eight longitudinal cohort studies of normal aging and AD. Setting: Variable recruitment criteria and follow-up intervals, including both population-based and clinical-based samples. Participants: Inclusion in our analyses required APOE genotype, that participants be age 50+, and are identified as either non-Hispanic Black or non-Hispanic White. In total, 18,080 participants were included in the present study with a total of 78,549 datapoints. Main outcomes and measures: Harmonized, longitudinal memory, executive function, and language scores were obtained from the Alzheimer's Disease Sequencing Project Phenotype Harmonization Consortium (ADSP-PHC). SuperAgers, controls, and AD dementia cases were identified by cognitive scores using a residual approach and clinical diagnoses across multiple timepoints when available. SuperAgers were compared to AD dementia cases and cognitively normal controls using age-defined bins (middle-aged, old, oldest-old). Results: Across racialized groups, SuperAgers had significantly higher proportions of APOE-ε2 alleles and lower proportions of APOE-ε4 alleles compared to cases. Similar differences were observed between SuperAgers and middle-aged and old controls. Non-Hispanic White SuperAgers had significantly lower proportions of APOE-ε4 alleles and significantly higher proportions of APOE-ε2 alleles compared to all cases and controls, including oldest-old controls. In contrast, non-Hispanic Black SuperAgers had significantly lower proportions of APOE-ε4 alleles compared to cases and younger controls, and significantly higher proportions of APOE-ε2 alleles compared only to cases. Conclusions and relevance: In the largest study to date, we demonstrated strong evidence that the frequency of APOE-ε4 and -ε2 alleles differ between non-Hispanic White SuperAgers and AD dementia cases and cognitively normal controls. Differences in the role of APOE in SuperAging by race underlines distinctions in mechanisms conferring resilience across race groups given likely differences in genetic ancestry.
  • Loading...
    Thumbnail Image
    Item
    Genetic and clinical correlates of two neuroanatomical AI dimensions in the Alzheimer's disease continuum
    (Springer Nature, 2024-10-05) Wen, Junhao; Yang, Zhijian; Nasrallah, Ilya M.; Cui, Yuhan; Erus, Guray; Srinivasan, Dhivya; Abdulkadir, Ahmed; Mamourian, Elizabeth; Hwang, Gyujoon; Singh, Ashish; Bergman, Mark; Bao, Jingxuan; Varol, Erdem; Zhou, Zhen; Boquet-Pujadas, Aleix; Chen, Jiong; Toga, Arthur W.; Saykin, Andrew J.; Hohman, Timothy J.; Thompson, Paul M.; Villeneuve, Sylvia; Gollub, Randy; Sotiras, Aristeidis; Wittfeld, Katharina; Grabe, Hans J.; Tosun, Duygu; Bilgel, Murat; An, Yang; Marcus, Daniel S.; LaMontagne, Pamela; Benzinger, Tammie L.; Heckbert, Susan R.; Austin, Thomas R.; Launer, Lenore J.; Espeland, Mark; Masters, Colin L.; Maruff, Paul; Fripp, Jurgen; Johnson, Sterling C.; Morris, John C.; Albert, Marilyn S.; Bryan, R. Nick; Resnick, Susan M.; Ferrucci, Luigi; Fan, Yong; Habes, Mohamad; Wolk, David; Shen, Li; Shou, Haochang; Davatzikos, Christos; Radiology and Imaging Sciences, School of Medicine
    Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the "diffuse-AD" (R1) dimension shows widespread brain atrophy, and the "MTL-AD" (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were "druggable genes" for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction-driven by genes different from APOE-which may collectively contribute to the early pathogenesis of AD. All results are publicly available at https://labs-laboratory.com/medicine/ .
  • Loading...
    Thumbnail Image
    Item
    Genetic and Sex Associations with Earlier Estimated Onset of Amyloid Positivity from over 4000 Harmonized Positron Emission Tomography Images
    (Wiley, 2025-01-09) Castellano, Tonnar; Wang, Ting Chen; Nolan, Emma; Archer, Derek B.; Cody, Karly; Harrison, Theresa M.; Wu, Yiyang; Durant, Alaina; Janve, Vaibhav A.; Engelman, Corinne D.; Jagust, William J.; Albert, Marilyn S.; Johnson, Sterling C.; Resnick, Susan M.; Sperling, Reisa A.; Bilgel, Murat; Saykin, Andrew J.; Vardarajan, Badri N.; Mayeux, Richard; Betthauser, Tobey J.; Dumitrescu, Logan C.; Mormino, Elizabeth; Hohman, Timothy J.; Koran, Mary Ellen I.; Radiology and Imaging Sciences, School of Medicine
    Background: New techniques have been developed to estimate the age when someone converted to amyloid positivity (EAOA) from PET, oftentimes offering information about a participant decades before they joined a research study. EAOA is variable across populations but we do not know the causes for these differences. This study aims to validate APOE associations with EAOA and explore genetic and sex‐based factors with EAOA. Methods: Data from six cohorts were analyzed. Our analysis included 4220 non‐Hispanic white people (57.6% women; 86.7% cognitively unimpaired at baseline scan). Amyloid PET data were harmonized using gaussian mixture models. EAOA was calculated using the sampled iterative local approximation (SILA) algorithm. Sex differences in EAOA were compared using t‐tests amongst amyloid positive individuals. A genome‐wide association study of EAOA was performed. Gene analyses were conducted using MAGMA. Results: Average EAOA was 81.1 years across all individuals regardless of amyloid status. APOE e2 homozygotes had slightly later EAOA than e3/e3 homozygotes. APOE e4 homozygotes converted to amyloid positivity 8.2 years before e3/e4 heterozygotes and over two decades earlier than e3 homozygotes. APOE e2/e4 converted to positivity roughly three years later than e3/e4 and nearly ten years earlier than e3 homozygotes. APOE genotype differences in EAOA described were statistically significant (p < .01). There were significant sex differences between men and women when examining amyloid positivity. Men converted to amyloid positivity over 2 years later than women (65.3 vs 63.2 years, p=3.23x10‐5). The rs12981369 polymorphism in ABCA7 was associated with EAOA (β = 2.14, p=9.27×10−9). Brain eQTL databases indicate associations between rs12981369 and gene expression of ABCA7. Gene‐level analyses revealed significant associations for ABCA7, HMHA1, and KIF13B. Conclusion: This study further describes the role of APOE and reveals roles for ABCA7 and KIF13B on amyloid onset. We identified a novel variant on chromosome 19 correlating with later amyloid onset conversion and highlight important differences between sexes. These findings highlight EAOA as a powerful endophenotype of AD and offer insights into potential drug‐targetable mechanisms for early AD intervention.
  • Loading...
    Thumbnail Image
    Item
    Genomic loci influence patterns of structural covariance in the human brain
    (National Academy of Science, 2023) Wen, Junhao; Nasrallah, Ilya M.; Abdulkadir, Ahmed; Satterthwaite, Theodore D.; Yang, Zhijian; Erus, Guray; Robert-Fitzgerald, Timothy; Singh, Ashish; Sotiras, Aristeidis; Boquet-Pujadas, Aleix; Mamourian, Elizabeth; Doshi, Jimit; Cui, Yuhan; Srinivasan, Dhivya; Skampardoni, Ioanna; Chen, Jiong; Hwang, Gyujoon; Bergman, Mark; Bao, Jingxuan; Veturi, Yogasudha; Zhou, Zhen; Yang, Shu; Dazzan, Paola; Kahn, Rene S.; Schnack, Hugo G.; Zanetti, Marcus V.; Meisenzahl, Eva; Busatto, Geraldo F.; Crespo-Facorro, Benedicto; Pantelis, Christos; Wood, Stephen J.; Zhuo, Chuanjun; Shinohara, Russell T.; Gur, Ruben C.; Gur, Raquel E.; Koutsouleris, Nikolaos; Wolf, Daniel H.; Saykin, Andrew J.; Ritchie, Marylyn D.; Shen, Li; Thompson, Paul M.; Colliot, Olivier; Wittfeld, Katharina; Grabe, Hans J.; Tosun, Duygu; Bilgel, Murat; An, Yang; Marcus, Daniel S.; LaMontagne, Pamela; Heckbert, Susan R.; Austin, Thomas R.; Launer, Lenore J.; Espeland, Mark; Masters, Colin L.; Maruff, Paul; Fripp, Jurgen; Johnson, Sterling C.; Morris, John C.; Albert, Marilyn S.; Bryan, R. Nick; Resnick, Susan M.; Fan, Yong; Habes, Mohamad; Wolk, David; Shou, Haochang; Davatzikos, Christos; Radiology and Imaging Sciences, School of Medicine
    Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.
  • Loading...
    Thumbnail Image
    Item
    Novel rare variant associations with late‐life cognitive performance
    (Wiley, 2025-01-09) Regelson, Alexandra N.; Archer, Derek B.; Durant, Alaina; Mukherjee, Shubhabrata; Lee, Michael L.; Choi, Seo-Eun; Scollard, Phoebe; Trittschuh, Emily H.; Mez, Jesse; Bush, William S.; Kuzma, Amanda B.; Cuccaro, Michael L.; Cruchaga, Carlos; Farrer, Lindsay A.; Wang, Li-San; Schellenberg, Gerard D.; Mayeux, Richard; Kukull, Walter A.; Keene, C. Dirk; Saykin, Andrew J.; Johnson, Sterling C.; Engelman, Corinne D.; Bennett, David A.; Barnes, Lisa L.; Larson, Eric B.; Nho, Kwangsik; Goate, Alison M.; Renton, Alan E.; Marcora, Edoardo; Fulton-Howard, Brian; Patel, Tulsi; Risacher, Shannon L.; DeStefano, Anita L.; Schneider, Julie A.; Habes, Mohamad; Seshadri, Sudha; Satizabal, Claudia L.; Maillard, Pauline; Toga, Arthur W.; Crawford, Karen; Tosun, Duygu; Vance, Jeffery M.; Mormino, Elizabeth; DeCarli, Charles S.; Montine, Thomas J.; Beecham, Gary; Biber, Sarah A.; De Jager, Philip L.; Vardarajan, Badri N.; Lee, Annie J.; Brickman, Adam M.; Reitz, Christiane; Manly, Jennifer J.; Lu, Qiongshi; Rentería, Miguel Arce; Deming, Yuetiva; Pericak-Vance, Margaret A.; Haines, Jonathan L.; Crane, Paul K.; Hohman, Timothy J.; Dumitrescu, Logan C.; Medical and Molecular Genetics, School of Medicine
    Background: Despite evidence that Alzheimer’s disease (AD) is highly heritable, there remains substantial “missing” heritability, likely due in part to the effect of rare variants and to the past reliance on case‐control analysis. Here, we leverage powerful endophenotypes of AD (cognitive performance across multiple cognitive domains) in a rare variant analysis to identify novel genetic drivers of cognition in aging and disease. Method: We leveraged 8 cohorts of cognitive aging with whole genome sequencing data from the AD Sequencing Project to conduct rare variant analyses of multiple domains of cognition (N = 9,317; mean age = 73; 56% female; 52% cognitively unimpaired). Harmonized scores for memory, executive function, and language were derived using confirmatory factor analysis models. Participants genetically similar to the 1000Genomes EUR reference panel were included in analysis. Variants included in the analysis had a minor allele frequency < 0.01, a minor allele count of ≥ 10, and were annotated as a high or moderate impact SNP using VEP. Associations of baseline scores in each cognitive domain were performed using SKAT‐O, including 92,905 rare variants among 16,243 genes. All tests were adjusted for sex, baseline age, sequencing center and platform, and genetic principal components. Correction for multiple comparisons was completed using the Benjamini‐Hochberg false discovery rate (FDR) procedure. Result: APOE was associated with baseline memory, language, and executive function, though only memory survived multiple‐test correction (p.FDR = 0.001). Outside of APOE, ITPKB was associated with baseline executive function (p.FDR = 0.048). AKTIP, SHCBP1L, and CCNF showed nominal associations with multiple domains of cognition that did not survive correction for multiple comparisons (p.FDRs<0.07). Conclusion: These results highlight novel rare variants associated with cognition. IPTKB is an AGORA nominated gene target for potential AD treatment. It is important in the regulation of immune cells and displays higher expression in the cortex of AD patients compared to controls. CCNF and AKTIP are brain eQTLs and have differential RNA expression in AD brains. Previously, variants in AKTIP have been associated with educational attainment, intelligence, and memory, while variants in CCNF have been associated with neuritic plaques and neurofibrillary tangles. Future analyses will incorporate longitudinal cognition and expand into additional populations.
  • Loading...
    Thumbnail Image
    Item
    Sex and APOE ε4 allele differences in longitudinal white matter microstructure in multiple cohorts of aging and Alzheimer's disease
    (Wiley, 2025) Peterson, Amalia; Sathe, Aditi; Zaras, Dimitrios; Yang, Yisu; Durant, Alaina; Deters, Kacie D.; Shashikumar, Niranjana; Pechman, Kimberly R.; Kim, Michael E.; Gao, Chenyu; Khairi, Nazirah Mohd; Li, Zhiyuan; Yao, Tianyuan; Huo, Yuankai; Dumitrescu, Logan; Gifford, Katherine A.; Wilson, Jo Ellen; Cambronero, Francis E.; Risacher, Shannon L.; Beason-Held, Lori L.; An, Yang; Arfanakis, Konstantinos; Erus, Guray; Davatzikos, Christos; Tosun, Duygu; Toga, Arthur W.; Thompson, Paul M.; Mormino, Elizabeth C.; Habes, Mohamad; Wang, Di; Zhang, Panpan; Schilling, Kurt; Alzheimer's Disease Neuroimaging Initiative (ADNI); BIOCARD Study Team; Alzheimer's Disease Sequencing Project (ADSP); Albert, Marilyn; Kukull, Walter; Biber, Sarah A.; Landman, Bennett A.; Johnson, Sterling C.; Schneider, Julie; Barnes, Lisa L.; Bennett, David A.; Jefferson, Angela L.; Resnick, Susan M.; Saykin, Andrew J.; Hohman, Timothy J.; Archer, Derek B.; Radiology and Imaging Sciences, School of Medicine
    Introduction: The effects of sex and apolipoprotein E (APOE)-Alzheimer's disease (AD) risk factors-on white matter microstructure are not well characterized. Methods: Diffusion magnetic resonance imaging data from nine well-established longitudinal cohorts of aging were free water (FW)-corrected and harmonized. This dataset included 4741 participants (age = 73.06 ± 9.75) with 9671 imaging sessions over time. FW and FW-corrected fractional anisotropy (FAFWcorr) were used to assess differences in white matter microstructure by sex and APOE ε4 carrier status. Results: Sex differences in FAFWcorr in projection tracts and APOE ε4 differences in FW limbic and occipital transcallosal tracts were most pronounced. Discussion: There are prominent differences in white matter microstructure by sex and APOE ε4 carrier status. This work adds to our understanding of disparities in AD. Additional work to understand the etiology of these differences is warranted. Highlights: Sex and apolipoprotein E (APOE) ε4 carrier status relate to white matter microstructural integrity. Females generally have lower free water-corrected fractional anisotropy compared to males. APOE ε4 carriers tended to have higher free water than non-carriers.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University