- Browse by Author
Browsing by Author "John, Chandy C."
Now showing 1 - 10 of 112
Results Per Page
Sort Options
Item A Human Pluripotent Stem Cell-Derived In Vitro Model of the Blood-Brain Barrier in Cerebral Malaria(2024-01) Gopinadhan, Adnan; John, Chandy C.; Nelson, David E.; Bauer, Margaret E.; Absalon, Sabrina; Tran, Tuan M.Blood-brain barrier (BBB) disruption is a central feature of cerebral malaria (CM), a severe complication of Plasmodium falciparum (Pf) infections. In CM, sequestration of Pf-infected red blood cells (Pf-iRBCs) to brain endothelial cells combined with inflammation, hemolysis, microvasculature obstruction and endothelial dysfunction mediates BBB disruption, resulting in severe neurologic symptoms including coma and seizures, potentially leading to death or long-term sequelae. In vitro models have advanced our knowledge of CM-mediated BBB disruption, but the physiological relevance remains uncertain. I aimed to develop a novel in vitro model of the BBB in CM using human induced pluripotent stem cell-derived brain microvascular endothelial cells (hiPSC-BMECs) that mimic a near in vivo barrier phenotype. hiPSC-BMECs were co-cultured with HB3var03 strain Pf-iRBCs up to 9 hours. Barrier integrity was measured using transendothelial electrical resistance (TEER). Localization and expression of tight junction (TJ) proteins, occludin and zona occludin-1 (ZO-1), and endothelial marker, intercellular adhesion molecule 1 (ICAM-1) was determined using immunofluorescence imaging (IF) and western blotting (WB). Expression of angiogenic and cell stress markers were also measured. hiPSC-BMECs showed improved barrier integrity and localization of TJ proteins compared to immortalized BMECs. After 6-hours of co-culture with Pf-iRBCs, hiPSC-BMECs showed reduced TEER and disruption of TJ protein localization compared to co-culture with uninfected RBCs (RBCs), but no change in TJ protein expression was observed by WB in the Pf-iRBCs co-cultures. Expression of ICAM-1 on hiPSC-BMECs co-cultured with Pf-iRBCs was higher compared to co-culture with RBCs. In addition, there was an increase in expression of the angiogenin, platelet factor 4, and phospho-heat shock protein-27 in the Pf-iRBCs co-cultures compared to co-cultures with RBCs. These findings demonstrate the physiological relevance of our hiPSC-BMEC-based in vitro model of the BBB, as determined by elevated TEER and appropriate TJ protein localization. In co-culture with Pf-iRBCs, breakdown in the barrier integrity, changes in TJ protein localization, increase in expression of ICAM-1, and of markers of angiogenesis and cellular stress, all point towards a more relevant in vitro model, suitable for investigating pathogenic mechanisms underlying BBB disruption in CM.Item A human pluripotent stem cell-derived in vitro model of the blood-brain barrier in cerebral malaria(Springer Nature, 2024-05-01) Gopinadhan, Adnan; Hughes, Jason M.; Conroy, Andrea L.; John, Chandy C.; Canfield, Scott G.; Datta, Dibyadyuti; Pediatrics, School of MedicineBackground: Blood-brain barrier (BBB) disruption is a central feature of cerebral malaria (CM), a severe complication of Plasmodium falciparum (Pf) infections. In CM, sequestration of Pf-infected red blood cells (Pf-iRBCs) to brain endothelial cells combined with inflammation, hemolysis, microvasculature obstruction and endothelial dysfunction mediates BBB disruption, resulting in severe neurologic symptoms including coma and seizures, potentially leading to death or long-term sequelae. In vitro models have advanced our knowledge of CM-mediated BBB disruption, but their physiological relevance remains uncertain. Using human induced pluripotent stem cell-derived brain microvascular endothelial cells (hiPSC-BMECs), we aimed to develop a novel in vitro model of the BBB in CM, exhibiting enhanced barrier properties. Methods: hiPSC-BMECs were co-cultured with HB3var03 strain Pf-iRBCs up to 9 h. Barrier integrity was measured using transendothelial electrical resistance (TEER) and sodium fluorescein permeability assays. Localization and expression of tight junction (TJ) proteins (occludin, zonula occludens-1, claudin-5), cellular adhesion molecules (ICAM-1, VCAM-1), and endothelial surface markers (EPCR) were determined using immunofluorescence imaging (IF) and western blotting (WB). Expression of angiogenic and cell stress markers were measured using multiplex proteome profiler arrays. Results: After 6-h of co-culture with Pf-iRBCs, hiPSC-BMECs showed reduced TEER and increased sodium fluorescein permeability compared to co-culture with uninfected RBCs, indicative of a leaky barrier. We observed disruptions in localization of occludin, zonula occludens-1, and claudin-5 by IF, but no change in protein expression by WB in Pf-iRBC co-cultures. Expression of ICAM-1 and VCAM-1 but not EPCR was elevated in hiPSC-BMECs with Pf-iRBC co-culture compared to uninfected RBC co-culture. In addition, there was an increase in expression of angiogenin, platelet factor-4, and phospho-heat shock protein-27 in the Pf-iRBCs co-culture compared to uninfected RBC co-culture. Conclusion: These findings demonstrate the validity of our hiPSC-BMECs based model of the BBB, that displays enhanced barrier integrity and appropriate TJ protein localization. In the hiPSC-BMEC co-culture with Pf-iRBCs, reduced TEER, increased paracellular permeability, changes in TJ protein localization, increase in expression of adhesion molecules, and markers of angiogenesis and cellular stress all point towards a novel model with enhanced barrier properties, suitable for investigating pathogenic mechanisms underlying BBB disruption in CM.Item Acute kidney injury in hospitalized children with sickle cell anemia(BMC, 2022-03-18) Batte, Anthony; Menon, Sahit; Ssenkusu, John; Kiguli, Sarah; Kalyesubula, Robert; Lubega, Joseph; Mutebi, Edrisa Ibrahim; Opoka, Robert O.; John, Chandy C.; Starr, Michelle C.; Conroy, Andrea L.; Pediatrics, School of MedicineBackground: Children with sickle cell anemia (SCA) are at increased risk of acute kidney injury (AKI) that may lead to death or chronic kidney disease. This study evaluated AKI prevalence and risk factors in children with SCA hospitalized with a vaso-occlusive crisis (VOC) in a low-resource setting. Further, we evaluated whether modifications to the Kidney Disease: Improving Global Outcomes (KDIGO) definition would influence clinical outcomes of AKI in children with SCA hospitalized with a VOC. Methods: We prospectively enrolled 185 children from 2 - 18 years of age with SCA (Hemoglobin SS) hospitalized with a VOC at a tertiary hospital in Uganda. Kidney function was assessed on admission, 24-48 h of hospitalization, and day 7 or discharge. Creatinine was measured enzymatically using an isotype-dilution mass spectrometry traceable method. AKI was defined using the original-KDIGO definition as ≥ 1.5-fold change in creatinine within seven days or an absolute change of ≥ 0.3 mg/dl within 48 h. The SCA modified-KDIGO (sKDIGO) definition excluded children with a 1.5-fold change in creatinine from 0.2 mg/dL to 0.3 mg/dL. Results: Using KDIGO, 90/185 (48.7%) children had AKI with 61/185 (33.0%) AKI cases present on admission, and 29/124 (23.4%) cases of incident AKI. Overall, 23 children with AKI had a 1.5-fold increase in creatinine from 0.2 mg/dL to 0.3 m/dL. Using the sKDIGO-definition, 67/185 (36.2%) children had AKI with 43/185 (23.2%) cases on admission, and 24/142 (16.9%) cases of incident AKI. The sKDIGO definition, but not the original-KDIGO definition, was associated with increased mortality (0.9% vs. 7.5%, p = 0.024). Using logistic regression, AKI risk factors included age (aOR, 1.10, 95% CI 1.10, 1.20), hypovolemia (aOR, 2.98, 95% CI 1.08, 8.23), tender hepatomegaly (aOR, 2.46, 95% CI 1.05, 5.81), and infection (aOR, 2.63, 95% CI 1.19, 5.81) (p < 0.05). Conclusion: These results demonstrate that AKI is a common complication in children with SCA admitted with VOC. The sKDIGO definition of AKI in children with SCA was a better predictor of clinical outcomes in children. There is need for promotion of targeted interventions to ensure early identification and treatment of AKI in children with SCA.Item Acute kidney injury in Ugandan children with severe malaria is associated with long-term behavioral problems(Public Library of Science, 2019-12-17) Hickson, Meredith R.; Conroy, Andrea L.; Bangirana, Paul; Opoka, Robert O.; Idro, Richard; Ssenkusu, John M.; John, Chandy C.; Pediatrics, School of MedicineBackground Acute kidney injury (AKI) is a risk factor for neurocognitive impairment in severe malaria (SM), but the impact of AKI on long-term behavioral outcomes following SM is unknown. Methods We conducted a prospective study on behavioral outcomes of Ugandan children 1.5 to 12 years of age with two forms of severe malaria, cerebral malaria (CM, n = 226) or severe malarial anemia (SMA, n = 214), and healthy community children (CC, n = 173). AKI was defined as a 50% increase in creatinine from estimated baseline. Behavior and executive function were assessed at baseline and 6, 12, and 24 months later using the Child Behavior Checklist and Behavior Rating Inventory of Executive Function, respectively. Age-adjusted z-scores were computed for each domain based on CC scores. The association between AKI and behavioral outcomes was evaluated across all time points using linear mixed effect models, adjusting for sociodemographic variables and disease severity. Results AKI was present in 33.2% of children with CM or SMA at baseline. Children ≥6 years of age with CM or SMA who had AKI on admission had worse scores in socio-emotional function in externalizing behaviors (Beta (95% CI), 0.52 (0.20, 0.85), p = 0.001), global executive function (0.48 (0.15, 0.82), p = 0.005) and behavioral regulation (0.66 (0.32, 1.01), p = 0.0002) than children without AKI. There were no behavioral differences associated with AKI in children <6 years of age. Conclusions AKI is associated with long-term behavioral problems in children ≥6 years of age with CM or SMA, irrespective of age at study enrollment.Item Acute Kidney Injury Interacts With Coma, Acidosis, and Impaired Perfusion to Significantly Increase Risk of Death in Children With Severe Malaria(Oxford University Press, 2022) Namazzi, Ruth; Opoka, Robert; Datta, Dibyadyuti; Bangirana, Paul; Batte, Anthony; Berrens, Zachary; Goings, Michael J.; Schwaderer, Andrew L.; Conroy, Andrea L.; John, Chandy C.; Pediatrics, School of MedicineBackground: Mortality in severe malaria remains high in children treated with intravenous artesunate. Acute kidney injury (AKI) is a common complication of severe malaria, but the interactions between AKI and other complications on the risk of mortality in severe malaria are not well characterized. Methods: Between 2014 and 2017, 600 children aged 6-48 months to 4 years hospitalized with severe malaria were enrolled in a prospective clinical cohort study evaluating clinical predictors of mortality in children with severe malaria. Results: The mean age of children in this cohort was 2.1 years (standard deviation, 0.9 years) and 338 children (56.3%) were male. Mortality was 7.3%, and 52.3% of deaths occurred within 12 hours of admission. Coma, acidosis, impaired perfusion, AKI, elevated blood urea nitrogen (BUN), and hyperkalemia were associated with increased mortality (all P < .001). AKI interacted with each risk factor to increase mortality (P < .001 for interaction). Children with clinical indications for dialysis (14.4% of all children) had an increased risk of death compared with those with no indications for dialysis (odds ratio, 6.56; 95% confidence interval, 3.41-12.59). Conclusions: AKI interacts with coma, acidosis, or impaired perfusion to significantly increase the risk of death in severe malaria. Among children with AKI, those who have hyperkalemia or elevated BUN have a higher risk of death. A better understanding of the causes of these complications of severe malaria, and development and implementation of measures to prevent and treat them, such as dialysis, are needed to reduce mortality in severe malaria.Item Acute kidney injury is associated with impaired cognition and chronic kidney disease in a prospective cohort of children with severe malaria(Springer Nature, 2019-05-21) Conroy, Andrea L.; Opoka, Robert O.; Bangirana, Paul; Idro, Richard; Ssenkusu, John M.; Datta, Dibyadyuti; Hodges, James S.; Morgan, Catherine; John, Chandy C.; Pediatrics, School of MedicineBACKGROUND: Acute kidney injury (AKI) is a recognized complication of pediatric severe malaria, but its long-term consequences are unknown. METHODS: Ugandan children with cerebral malaria (CM, n = 260) and severe malaria anemia (SMA, n = 219) or community children (CC, n = 173) between 1.5 and 12 years of age were enrolled in a prospective cohort study. Kidney Disease: Improving Global Outcomes (KDIGO) criteria were used to retrospectively define AKI and chronic kidney disease (CKD). Cognitive testing was conducted using the Mullen Scales of Early Learning in children < 5 and Kaufman Assessment Battery for Children (K-ABC) second edition in children ≥ 5 years of age. RESULTS: The prevalence of AKI was 35.1%, ranging from 25.1% in SMA to 43.5% in CM. In-hospital mortality was 11.9% in AKI compared to 4.2% in children without AKI (p = 0.001), and post-discharge mortality was 4.7% in AKI compared to 1.3% in children without AKI (p = 0.030) corresponding to an all-cause adjusted hazard ratio of 2.30 (95% CI 1.21, 4.35). AKI was a risk factor for short- and long-term neurocognitive impairment. At 1 week post-discharge, the frequency of neurocognitive impairment was 37.3% in AKI compared to 13.5% in children without AKI (adjusted odds ratio (aOR) 2.31 [95% CI 1.32, 4.04]); at 1-year follow-up, it was 13.3% in AKI compared to 3.4% in children without AKI (aOR 2.48 [95% CI 1.01, 6.10]), and at 2-year follow-up, it was 13.0% in AKI compared to 3.4% in children without AKI (aOR 3.03 [95% CI 1.22, 7.58]). AKI was a risk factor for CKD at 1-year follow-up: 7.6% of children with severe malaria-associated AKI had CKD at follow-up compared to 2.8% of children without AKI (p = 0.038) corresponding to an OR of 2.81 (95% CI 1.02, 7.73). The presenting etiology of AKI was consistent with prerenal azotemia, and lactate dehydrogenase as a marker of intravascular hemolysis was an independent risk factor for AKI in CM and SMA (p < 0.0001). In CM, AKI was associated with the presence and severity of retinopathy (p < 0.05) and increased cerebrospinal fluid albumin suggestive of blood-brain barrier disruption. CONCLUSIONS: AKI is a risk factor for long-term neurocognitive impairment and CKD in pediatric severe malaria.Item Acute kidney injury, persistent kidney disease, and post-discharge morbidity and mortality in severe malaria in children: A prospective cohort study(Elsevier, 2022-02-12) Namazzi, Ruth; Batte, Anthony; Opoka, Robert O.; Bangirana, Paul; Schwaderer, Andrew L.; Berrens, Zachary; Datta, Dibyadyuti; Goings, Michael; Ssenkusu, John M.; Goldstein, Stuart L.; John, Chandy C.; Conroy, Andrea L.; Pediatrics, School of MedicineBackground: Globally, 85% of acute kidney injury (AKI) cases occur in low-and-middle-income countries. There is limited information on persistent kidney disease (acute kidney disease [AKD]) following severe malaria-associated AKI. Methods: Between March 28, 2014, and April 18, 2017, 598 children with severe malaria and 118 community children were enrolled in a two-site prospective cohort study in Uganda and followed up for 12 months. The Kidney Disease: Improving Global Outcomes (KDIGO) criteria were used to define AKI (primary exposure) and AKD at 1-month follow-up (primary outcome). Plasma neutrophil gelatinase-associated lipocalin (NGAL) was assessed as a structural biomarker of AKI. Findings: The prevalence of AKI was 45·3% with 21·5% of children having unresolved AKI at 24 h. AKI was more common in Eastern Uganda. In-hospital mortality increased across AKI stages from 1·8% in children without AKI to 26·5% with Stage 3 AKI (p < 0·0001). Children with a high-risk plasma NGAL test were more likely to have unresolved AKI (OR, 7·00 95% CI 4·16 to 11·76) and die in hospital (OR, 6·02 95% CI 2·83 to 12·81). AKD prevalence was 15·6% at 1-month follow-up with most AKD occurring in Eastern Uganda. Risk factors for AKD included severe/unresolved AKI, blackwater fever, and a high-risk NGAL test (adjusted p < 0·05). Paracetamol use during hospitalization was associated with reduced AKD (p < 0·0001). Survivors with AKD post-AKI had higher post-discharge mortality (17·5%) compared with children without AKD (3·7%). Interpretation: Children with severe malaria-associated AKI are at risk of AKD and post-discharge mortality.Item Adherence to clinical guidelines is associated with reduced inpatient mortality among children with severe anemia in Ugandan hospitals(PLOS, 2019-01-25) Opoka, Robert O.; Ssemata, Andrew S.; Oyang, William; Nambuya, Harriet; John, Chandy C.; Karamagi, Charles; Tumwine, James K.; Pediatrics, School of MedicineBACKGROUND: In resource limited settings, there is variability in the level of adherence to clinical guidelines in the inpatient management of children with common conditions like severe anemia. However, there is limited data on the effect of adherence to clinical guidelines on inpatient mortality in children managed for severe anemia. METHODS: We analyzed data from an uncontrolled before and after in-service training intervention to improve quality of care in Lira and Jinja regional referral hospitals in Uganda. Inpatient records of children aged 0 to 5 years managed as cases of 'severe anemia (SA)' were reviewed to ascertain adherence to clinical guidelines and compare inpatient deaths in SA children managed versus those not managed according to clinical guidelines. Logistic regression analysis was conducted to evaluate the relationship between clinical care factors and inpatient deaths amongst patients managed for SA. RESULTS: A total of 1,131 children were assigned a clinical diagnosis of 'severe anemia' in the two hospitals. There was improvement in the level of care after the in-service training intervention with more children being managed according to clinical guidelines compared to the period before, 218/510 (42.7%) vs 158/621 (25.4%) (p < 0.001). Overall, children managed according to clinical guidelines had reduced risk of inpatient mortality compared to those not managed according to clinical guidelines, [OR 0.28, (95%, CI 0.14, 0.55), p = 0.001]. Clinical care factors associated with decreased risk of inpatient death included, having pre-transfusion hemoglobin done to confirm diagnosis [OR 0.5; 95% CI 0.29, 0.87], a co-morbid diagnosis of severe malaria [OR 0.4; 95% CI 0.25, 0.76], and being reviewed after admission by a clinician [OR 0.3; 95% CI 0.18, 0.59], while a co-morbid diagnosis of severe acute malnutrition was associated with increased risk of inpatient death [OR 4.2; 95% CI 2.15, 8.22]. CONCLUSION: Children with suspected SA who are managed according to clinical guidelines have lower in-hospital mortality than those not managed according to the guidelines. Efforts to reduce inpatient mortality in SA children in resource-limited settings should focus on training and supporting health workers to adhere to clinical guidelines.Item Adipose tissue parasite sequestration drives leptin production in mice and correlates with human cerebral malaria(American Association for the Advancement of Science, 2021-03-24) Mejia, Pedro; Treviño-Villarreal, J. Humberto; De Niz, Mariana; Meibalan, Elamaran; Longchamp, Alban; Reynolds, Justin S.; Turnbull, Lindsey B.; Opoka, Robert O.; Roussilhon, Christian; Spielmann, Tobias; Ozaki, C. Keith; Heussler, Volker T.; Seydel, Karl B.; Taylor, Terrie E.; John, Chandy C.; Milner, Danny A.; Marti, Matthias; Mitchell, James R.; Medicine, School of MedicineCirculating levels of the adipokine leptin are linked to neuropathology in experimental cerebral malaria (ECM), but its source and regulation mechanism remain unknown. Here, we show that sequestration of infected red blood cells (iRBCs) in white adipose tissue (WAT) microvasculature increased local vascular permeability and leptin production. Mice infected with parasite strains that fail to sequester in WAT displayed reduced leptin production and protection from ECM. WAT sequestration and leptin induction were lost in CD36KO mice; however, ECM susceptibility revealed sexual dimorphism. Adipocyte leptin was regulated by the mechanistic target of rapamycin complex 1 (mTORC1) and blocked by rapamycin. In humans, although Plasmodium falciparum infection did not increase circulating leptin levels, iRBC sequestration, tissue leptin production, and mTORC1 activity were positively correlated with CM in pediatric postmortem WAT. These data identify WAT sequestration as a trigger for leptin production with potential implications for pathogenesis of malaria infection, prognosis, and treatment.Item Admission Clinical and EEG Features Associated With Mortality and Long-term Neurologic and Cognitive Outcomes in Pediatric Cerebral Malaria(Wolters Kluwer, 2023) Clark, Daniel J.; Bond, Caitlin; Andrews, Alexander; Muller, Daniel J.; Sarkisian, Angela; Opoka, Robert O.; Idro, Richard; Bangirana, Paul; Witten, Andy; Sausen, Nicholas J.; Birbeck, Gretchen L.; John, Chandy C.; Postels, Douglas G.; Pediatrics, School of MedicineBackground and objectives: For children with cerebral malaria, mortality is high, and in survivors, long-term neurologic and cognitive dysfunctions are common. While specific clinical factors are associated with death or long-term neurocognitive morbidity in cerebral malaria, the association of EEG features with these outcomes, particularly neurocognitive outcomes, is less well characterized. Methods: In this prospective cohort study of 149 children age 6 months to 12 years who survived cerebral malaria in Kampala, Uganda, we evaluated whether depth of coma, number of clinical seizures, or EEG features during hospitalization were associated with mortality during hospitalization, short-term and long-term neurologic deficits, or long-term cognitive outcomes (overall cognition, attention, memory) over the 2-year follow-up. Results: Higher Blantyre or Glasgow Coma Scores (BCS and GCS, respectively), higher background voltage, and presence of normal reactivity on EEG were each associated with lower mortality. Among clinical and EEG features, the presence of >4 seizures on admission had the best combination of negative and positive predictive values for neurologic deficits in follow-up. In multivariable modeling of cognitive outcomes, the number of seizures and specific EEG features showed independent association with better outcomes. In children younger than 5 years throughout the study, seizure number and presence of vertex sharp waves were independently associated with better posthospitalization cognitive performance, faster dominant frequency with better attention, and higher average background voltage and faster dominant background frequency with better associative memory. In children younger than 5 years at CM episode but 5 years or older at cognitive testing, seizure number, background dominant frequency, and the presence of vertex sharp waves were each associated with changes in cognition, seizure number and variability with attention, and seizure number with working memory. Discussion: In children with cerebral malaria, seizure number is strongly associated with the risk of long-term neurologic deficits, while seizure number and specific EEG features (average background voltage, dominant rhythm frequency, presence of vertex sharp waves, presence of variability) are independently associated with cognitive outcomes. Future studies should evaluate the predictive value of these findings.