- Browse by Author
Browsing by Author "Jiang, Wen"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Cross-β helical filaments of Tau and TMEM106B in gray and white matter of multiple system tauopathy with presenile dementia(Springer, 2023) Hoq, Md. Rejaul; Bharath, Sakshibeedu R.; Hallinan, Grace I.; Fernandez, Anllely; Vago, Frank S.; Ozcan, Kadir A.; Li, Daoyi; Garringer, Holly J.; Vidal, Ruben; Ghetti, Bernardino; Jiang, Wen; Pathology and Laboratory Medicine, School of MedicineItem Cryo-EM structures and functional characterization of homo- and heteropolymers of human ferritin variants(Nature, 2020-11-26) Irimia-Dominguez, Jose; Sun, Chen; Li, Kunpeng; Muhoberac, Barry B.; Hallinan, Grace I.; Garringer, Holly J.; Ghetti, Bernardino; Jiang, Wen; Vidal, Ruben; Pathology and Laboratory Medicine, School of MedicineThe role of abnormal brain iron metabolism in neurodegenerative diseases is still insufficiently understood. Here, we investigate the molecular basis of the neurodegenerative disease hereditary ferritinopathy (HF), in which dysregulation of brain iron homeostasis is the primary cause of neurodegeneration. We mutagenized ferritin's three-fold pores (3FPs), i.e. the main entry route for iron, to investigate ferritin's iron management when iron must traverse the protein shell through the disrupted four-fold pores (4FPs) generated by mutations in the ferritin light chain (FtL) gene in HF. We assessed the structure and properties of ferritins using cryo-electron microscopy and a range of functional analyses in vitro. Loss of 3FP function did not alter ferritin structure but led to a decrease in protein solubility and iron storage. Abnormal 4FPs acted as alternate routes for iron entry and exit in the absence of functional 3FPs, further reducing ferritin iron-storage capacity. Importantly, even a small number of MtFtL subunits significantly compromises ferritin solubility and function, providing a rationale for the presence of ferritin aggregates in cell types expressing different levels of FtLs in patients with HF. These findings led us to discuss whether modifying pores could be used as a pharmacological target in HF.Item Cryo-EM structures of amyloid-β and tau filaments in Down syndrome(Springer Nature, 2024) Fernandez, Anllely; Hoq, Md Rejaul; Hallinan, Grace I.; Li, Daoyi; Bharath, Sakshibeedu R.; Vago, Frank S.; Zhang, Xiaoqi; Ozcan, Kadir A.; Newell, Kathy L.; Garringer, Holly J.; Jiang, Wen; Ghetti, Bernardino; Vidal, Ruben; Pathology and Laboratory Medicine, School of MedicineAdult individuals with Down syndrome (DS) develop Alzheimer disease (AD). Whether there is a difference between AD in DS and AD regarding the structure of amyloid-β (Aβ) and tau filaments is unknown. Here we report the structure of Aβ and tau filaments from two DS brains. We found two Aβ40 filaments (types IIIa and IIIb) that differ from those previously reported in sporadic AD and two types of Aβ42 filaments (I and II) identical to those found in sporadic and familial AD. Tau filaments (paired helical filaments and straight filaments) were identical to those in AD, supporting the notion of a common mechanism through which amyloids trigger aggregation of tau. This knowledge is important for understanding AD in DS and assessing whether adults with DS could be included in AD clinical trials.Item Cryo-EM structures of cotton wool plaques' amyloid β and of tau filaments in dominantly inherited Alzheimer disease(Springer, 2024-08-15) Hoq, Md Rejaul; Fernandez, Anllely; Vago, Frank S.; Hallinan, Grace I.; Bharath, Sakshibeedu R.; Li, Daoyi; Ozcan, Kadir A.; Garringer, Holly J.; Jiang, Wen; Vidal, Ruben; Ghetti, Bernardino; Pathology and Laboratory Medicine, School of MedicineCotton wool plaques (CWPs) have been described as features of the neuropathologic phenotype of dominantly inherited Alzheimer disease (DIAD) caused by some missense and deletion mutations in the presenilin 1 (PSEN1) gene. CWPs are round, eosinophilic amyloid-β (Aβ) plaques that lack an amyloid core and are recognizable, but not fluorescent, in Thioflavin S (ThS) preparations. Amino-terminally truncated and post-translationally modified Aβ peptide species are the main component of CWPs. Tau immunopositive neurites may be present in CWPs. In addition, neurofibrillary tangles coexist with CWPs. Herein, we report the structure of Aβ and tau filaments isolated from brain tissue of individuals affected by DIAD caused by the PSEN1 V261I and A431E mutations, with the CWP neuropathologic phenotype. CWPs are predominantly composed of type I Aβ filaments present in two novel arrangements, type Ic and type Id; additionally, CWPs contain type I and type Ib Aβ filaments. Tau filaments have the AD fold, which has been previously reported in sporadic AD and DIAD. The formation of type Ic and type Id Aβ filaments may be the basis for the phenotype of CWPs. Our data are relevant for the development of PET imaging methodologies to best detect CWPs in DIAD.Item Cryo-EM structures of prion protein filaments from Gerstmann-Sträussler-Scheinker disease(Springer, 2022) Hallinan, Grace I.; Ozcan, Kadir A.; Hoq, Md Rejaul; Cracco, Laura; Vago, Frank S.; Bharath, Sakshibeedu R.; Li, Daoyi; Jacobsen, Max; Doud, Emma H.; Mosley, Amber L.; Fernandez, Anllely; Garringer, Holly J.; Jiang, Wen; Ghetti, Bernardino; Vidal, Ruben; Pathology and Laboratory Medicine, School of MedicinePrion protein (PrP) aggregation and formation of PrP amyloid (APrP) are central events in the pathogenesis of prion diseases. In the dominantly inherited prion protein amyloidosis known as Gerstmann-Sträussler-Scheinker (GSS) disease, plaques made of PrP amyloid are present throughout the brain. The c.593t > c mutation in the prion protein gene (PRNP) results in a phenylalanine to serine amino acid substitution at PrP residue 198 (F198S) and causes the most severe amyloidosis among GSS variants. It has been shown that neurodegeneration in this disease is associated with the presence of extracellular APrP plaques and neuronal intracytoplasmic Tau inclusions, that have been shown to contain paired helical filaments identical to those found in Alzheimer disease. Using cryogenic electron microscopy (cryo-EM), we determined for the first time the structures of filaments of human APrP, isolated post-mortem from the brain of two symptomatic PRNP F198S mutation carriers. We report that in GSS (F198S) APrP filaments are composed of dimeric, trimeric and tetrameric left-handed protofilaments with their protomers sharing a common protein fold. The protomers in the cross-β spines consist of 62 amino acids and span from glycine 80 to phenylalanine 141, adopting a previously unseen spiral fold with a thicker outer layer and a thinner inner layer. Each protomer comprises nine short β-strands, with the β1 and β8 strands, as well as the β4 and β9 strands, forming a steric zipper. The data obtained by cryo-EM provide insights into the structural complexity of the PrP filament in a dominantly inherited human PrP amyloidosis. The novel findings highlight the urgency of extending our knowledge of the filaments' structures that may underlie distinct clinical and pathologic phenotypes of human neurodegenerative diseases.Item Discovery and Biological Characterization of PRMT5:MEP50 Protein-Protein Interaction Inhibitors(American Chemical Society, 2022) Asberry, Andrew M.; Cai, Xinpei; Deng, Xuehong; Liu, Sheng; Santiago, Ulises; Sims, Hunter; Liang, Weida; Xu, Xueyong; Wan, Jun; Jiang, Wen; Camacho, Carlos; Dai, Mingji; Hu, Chang-Deng; Medical and Molecular Genetics, School of MedicineProtein arginine methyltransferase 5 (PRMT5) is a master epigenetic regulator and an extensively validated therapeutic target in multiple cancers. Notably, PRMT5 is the only PRMT that requires an obligate cofactor, methylosome protein 50 (MEP50), to function. We developed compound 17, a novel small molecule PRMT5:MEP50 protein:protein interaction (PPI) inhibitor, after initial virtual screen hit identification and analog refinement. Molecular docking indicated that compound 17 targets PRMT5:MEP50 PPI by displacing MEP50 W54 burial into a hydrophobic pocket of PRMT5 TIM barrel. In vitro analysis indicates IC50 <500 nM for prostate and lung cancer cells with selective, specific inhibition of PRMT5:MEP50 substrate methylation and target gene expression, and RNA-seq analysis suggests that compound 17 may dysregulate TGF-β signaling. Compound 17 provides a proof of concept in targeting PRMT5:MEP50 PPI, as opposed to catalytic targeting, as a novel mechanism of action and supports further preclinical development of inhibitors in this class.Item Structure of Tau filaments in Prion protein amyloidoses(Springer, 2021-08) Hallinan, Grace I.; Hoq, Md Rejaul; Ghosh, Manali; Vago, Frank S.; Fernandez, Anllely; Garringer, Holly J.; Vidal, Ruben; Jiang, Wen; Ghetti, Bernardino; Pathology and Laboratory Medicine, School of MedicineIn human neurodegenerative diseases associated with the intracellular aggregation of Tau protein, the ordered cores of Tau filaments adopt distinct folds. Here, we analyze Tau filaments isolated from the brain of individuals affected by Prion-Protein cerebral amyloid angiopathy (PrP-CAA) with a nonsense mutation in the PRNP gene that leads to early termination of translation of PrP (Q160Ter or Q160X), and Gerstmann-Sträussler-Scheinker (GSS) disease, with a missense mutation in the PRNP gene that leads to an amino acid substitution at residue 198 (F198S) of PrP. The clinical and neuropathologic phenotypes associated with these two mutations in PRNP are different; however, the neuropathologic analyses of these two genetic variants have consistently shown the presence of numerous neurofibrillary tangles (NFTs) made of filamentous Tau aggregates in neurons. We report that Tau filaments in PrP-CAA (Q160X) and GSS (F198S) are composed of 3-repeat and 4-repeat Tau isoforms, having a striking similarity to NFTs in Alzheimer disease (AD). In PrP-CAA (Q160X), Tau filaments are made of both paired helical filaments (PHFs) and straight filaments (SFs), while in GSS (F198S), only PHFs were found. Mass spectrometry analyses of Tau filaments extracted from PrP-CAA (Q160X) and GSS (F198S) brains show the presence of post-translational modifications that are comparable to those seen in Tau aggregates from AD. Cryo-EM analysis reveals that the atomic models of the Tau filaments obtained from PrP-CAA (Q160X) and GSS (F198S) are identical to those of the Tau filaments from AD, and are therefore distinct from those of Pick disease, chronic traumatic encephalopathy, and corticobasal degeneration. Our data support the hypothesis that in the presence of extracellular amyloid deposits and regardless of the primary amino acid sequence of the amyloid protein, similar molecular mechanisms are at play in the formation of identical Tau filaments.Item Sub-3 Å Apoferritin Structure Determined With Full Range of Phase Shifts Using A Single Position Of Volta Phase Plate(Elsevier, 2019-05-01) Li, Kunpeng; Sun, Chen; Klose, Thomas; Irimia-Dominguez, Jose; Vago, Frank S.; Vidal, Ruben; Jiang, Wen; Pathology and Laboratory Medicine, School of MedicineVolta Phase Plate (VPP) has become an invaluable tool for cryo-EM structural determination of small protein complexes by increasing image contrast. Currently, the standard protocol of VPP usage periodically changes the VPP position to a fresh spot during data collection. Such a protocol was to target the phase shifts to a relatively narrow range (around 90°) based on the observations of increased phase shifts and image blur associated with more images taken with a single VPP position. Here, we report a 2.87 Å resolution structure of apoferritin reconstructed from a dataset collected using only a single position of VPP. The reconstruction resolution and map density features are nearly identical to the reconstruction from the control dataset collected with periodic change of VPP positions. Further experiments have verified that similar results, including a 2.5 Å resolution structure, could be obtained with a full range of phase shifts, different spots of variable phase shift increasing rates, and at different ages of the VPP post-installation. Furthermore, we have found that the phase shifts at low resolutions, probably related to the finite size of the Volta spots, could not be correctly modeled by current CTF model using a constant phase shift at all frequencies. In dataset III, severe beam tilt issue was identified but could be computationally corrected with iterative refinements. The observations in this study may provide new insights into further improvement of both the efficiency and robustness of VPP, and to help turn VPP into a plug-and-play device for high-resolution cryo-EM.Item Ubiquitination and degradation of SUMO1 by small-molecule degraders extends survival of mice with patient-derived tumors(AAAS, 2021) Bellail, Anita C.; Jin, Hong Ri; Lo, Ho-Yin; Jung, Sung Han; Hamdouchi, Chafiq; Kim, Daeho; Higgins, Ryan K.; Blanck, Maximilian; le Sage, Carlos; Cross, Benedict C. S.; Li, Jing; Mosley, Amber L.; Wijeratne, Aruna B.; Jiang, Wen; Ghosh, Manali; Zhao, Yin Quan; Hauck, Paula M.; Shekhar, Anantha; Hao, Chunhai; Pathology and Laboratory Medicine, School of MedicineDiscovery of small-molecule degraders that activate ubiquitin ligase–mediated ubiquitination and degradation of targeted oncoproteins in cancer cells has been an elusive therapeutic strategy. Here, we report a cancer cell–based drug screen of the NCI drug-like compounds library that enabled identification of small-molecule degraders of the small ubiquitin-related modifier 1 (SUMO1). Structure-activity relationship studies of analogs of the hit compound CPD1 led to identification of a lead compound HB007 with improved properties and anticancer potency in vitro and in vivo. A genome-scale CRISPR-Cas9 knockout screen identified the substrate receptor F-box protein 42 (FBXO42) of cullin 1 (CUL1) E3 ubiquitin ligase as required for HB007 activity. Using HB007 pull-down proteomics assays, we pinpointed HB007’s binding protein as the cytoplasmic activation/proliferation-associated protein 1 (CAPRIN1). Biolayer interferometry and compound competitive immunoblot assays confirmed the selectivity of HB007’s binding to CAPRIN1. When bound to CAPRIN1, HB007 induced the interaction of CAPRIN1 with FBXO42. FBXO42 then recruited SUMO1 to the CAPRIN1-CUL1-FBXO42 ubiquitin ligase complex, where SUMO1 was ubiquitinated in several of human cancer cells. HB007 selectively degraded SUMO1 in patient tumor–derived xenografts implanted into mice. Systemic administration of HB007 inhibited the progression of patient-derived brain, breast, colon, and lung cancers in mice and increased survival of the animals. This cancer cell–based screening approach enabled discovery of a small-molecule degrader of SUMO1 and may be useful for identifying other small-molecule degraders of oncoproteins.