- Browse by Author
Browsing by Author "Jiang, Hong"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Aducanumab anti-amyloid immunotherapy induces sustained microglial and immune alterations(Rockefeller University, 2024) Cadiz, Mika P.; Gibson, Katelin A.; Todd, Kennedi T.; Nascari, David G.; Massa, Nashali; Lilley, Meredith T.; Olney, Kimberly C.; Al-Amin, Md Mamun; Jiang, Hong; Holtzman, David M.; Fryer, John D.; Medical and Molecular Genetics, School of MedicineAducanumab, an anti-amyloid immunotherapy for Alzheimer's disease, efficiently reduces Aβ, though its plaque clearance mechanisms, long-term effects, and effects of discontinuation are not fully understood. We assessed the effect of aducanumab treatment and withdrawal on Aβ, neuritic dystrophy, astrocytes, and microglia in the APP/PS1 amyloid mouse model. We found that reductions in amyloid and neuritic dystrophy during acute treatment were accompanied by microglial and astrocytic activation, and microglial recruitment to plaques and adoption of an aducanumab-specific pro-phagocytic and pro-degradation transcriptomic signature, indicating a role for microglia in aducanumab-mediated Aβ clearance. Reductions in Aβ and dystrophy were sustained 15 but not 30 wk after discontinuation, and reaccumulation of plaques coincided with loss of the microglial aducanumab signature and failure of microglia to reactivate. This suggests that despite the initial benefit from treatment, microglia are unable to respond later to restrain plaque reaccumulation, making further studies on the effect of amyloid-directed immunotherapy withdrawal crucial for assessing long-term safety and efficacy.Item Altered clearance of beta-amyloid from the cerebrospinal fluid following subchronic lead exposure in rats: Roles of RAGE and LRP1 in the choroid plexus(Elsevier, 2020-04-08) Shen, Xiaoli; Xia, Li; Liu, Luqing; Jiang, Hong; Shannahan, Jonathan; Du, Yansheng; Zheng, Wei; Neurology, School of MedicineFormation of amyloid plaques is the hallmark of Alzheimer's disease. Our early studies show that lead (Pb) exposure in PDAPP transgenic mice increases β-amyloid (Aβ) levels in the cerebrospinal fluid (CSF) and hippocampus, leading to the formation of amyloid plaques in mouse brain. Aβ in the CSF is regulated by the blood-CSF barrier (BCB) in the choroid plexus. However, the questions as to whether and how Pb exposure affected the influx and efflux of Aβ in BCB remained unknown. This study was conducted to investigate whether Pb exposure altered the Aβ efflux in the choroid plexus from the CSF to blood, and how Pb may affect the expression and subcellular translocation of two major Aβ transporters, i.e., the receptor for advanced glycation end-products (RAGE) and the low density lipoprotein receptor protein-1 (LRP1) in the choroid plexus. Sprague-Dawley rats received daily oral gavage at doses of 0, 14 (low-dose), and 27 (high-dose) mg Pb/kg as Pb acetate, 5 d/wk, for 4 or 8 wks. At the end of Pb exposure, a solution containing Aβ40 (2.5 μg/mL) was infused to rat brain via a cannulated internal carotid artery. Subchronic Pb exposure at both dose levels significantly increased Aβ levels in the CSF and choroid plexus (p < 0.05) by ELISA. Confocal data showed that 4-wk Pb exposures prompted subcellular translocation of RAGE from the choroidal cytoplasm toward apical microvilli. Furthermore, it increased the RAGE expression in the choroid plexus by 34.1 % and 25.1 % over the controls (p < 0.05) in the low- and high- dose groups, respectfully. Subchronic Pb exposure did not significantly affect the expression of LRP1; yet the high-dose group showed LRP1 concentrated along the basal lamina. The data from the ventriculo-cisternal perfusion revealed a significantly decreased efflux of Aβ40 from the CSF to blood via the blood-CSF barrier. Incubation of freshly dissected plexus tissues with Pb in artificial CSF supported a Pb effect on increased RAGE expression. Taken together, these data suggest that Pb accumulation in the choroid plexus after subchronic exposure reduces the clearance of Aβ from the CSF to blood by the choroid plexus, which, in turn, leads to an increase of Aβ in the CSF. Interaction of Pb with RAGE and LRP1 in choroidal epithelial cells may contribute to the altered Aβ transport by the blood-CSF barrier in brain ventricles.Item Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy(Springer Nature, 2021) Da Mesquita, Sandro; Papadopoulos, Zachary; Dykstra, Taitea; Brase, Logan; Farias, Fabiana Geraldo; Wall, Morgan; Jiang, Hong; Kodira, Chinnappa Dilip; de Lima, Kalil Alves; Herz, Jasmin; Louveau, Antoine; Goldman, Dylan H.; Salvador, Andrea Francesca; Onengut-Gumuscu, Suna; Farber, Emily; Dabhi, Nisha; Kennedy, Tatiana; Milam, Mary Grace; Baker, Wendy; Smirnov, Igor; Rich, Stephen S.; Dominantly Inherited Alzheimer Network; Benitez, Bruno A.; Karch, Celeste M.; Perrin, Richard J.; Farlow, Martin; Chhatwal, Jasmeer P.; Holtzman, David M.; Cruchaga, Carlos; Harari, Oscar; Kipnis, Jonathan; Neurology, School of MedicineAlzheimer's disease (AD) is the most prevalent cause of dementia1. Although there is no effective treatment for AD, passive immunotherapy with monoclonal antibodies against amyloid beta (Aβ) is a promising therapeutic strategy2,3. Meningeal lymphatic drainage has an important role in the accumulation of Aβ in the brain4, but it is not known whether modulation of meningeal lymphatic function can influence the outcome of immunotherapy in AD. Here we show that ablation of meningeal lymphatic vessels in 5xFAD mice (a mouse model of amyloid deposition that expresses five mutations found in familial AD) worsened the outcome of mice treated with anti-Aβ passive immunotherapy by exacerbating the deposition of Aβ, microgliosis, neurovascular dysfunction, and behavioural deficits. By contrast, therapeutic delivery of vascular endothelial growth factor C improved clearance of Aβ by monoclonal antibodies. Notably, there was a substantial overlap between the gene signature of microglia from 5xFAD mice with impaired meningeal lymphatic function and the transcriptional profile of activated microglia from the brains of individuals with AD. Overall, our data demonstrate that impaired meningeal lymphatic drainage exacerbates the microglial inflammatory response in AD and that enhancement of meningeal lymphatic function combined with immunotherapies could lead to better clinical outcomes.