- Browse by Author
Browsing by Author "Jiang, Feifei"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item A Comparison of the Ligation Torque Expression of a Ribbonwise Bracket–Archwire Combination and a Conventional Combination: A Primary Study(Hindawi, 2022-09-28) Lin, Bin; Jiang, Feifei; Chen, Jie; Liang, Jiaxing; Mechanical and Energy Engineering, Purdue School of Engineering and TechnologyObjective: To assess the effect of the third-order mechanics of a new ribbonwise bracket-archwire combination using an orthodontic torque simulator. Material and Methods. An orthodontic torque simulator was used to measure the third-order moment of a maxillary central incisor as it changed from a neutral position to a 40° rotation in 1° increment. A new ribbonwise bracket (Xinya, China) was compared with a conventional ligation bracket (American Orthodontic, U.S.A.). The effects of different archwire sizes (i.e., 0.017″ × 0.025″ and 0.019″ × 0.025″) and materials (i.e., nickel-titanium, titanium-molybdenum alloy, and stainless steel) were analyzed. Paired sample t-tests were conducted to compare the moments between the two bracket types corresponding to each of the archwires. The effects of the stiffness of the bracket-archwire complexes were also assessed. Results: Statistically significant differences (P=0.05) between the moments from the two brackets were found. The ribbonwise bracket-archwire complex generated larger moments when the rotation angle was lower than 30°. The ribbonwise brackets produced moments that could reach a threshold of 5 Nmm more quickly as the angle was increased. The higher the stiffness of the complex, the larger the moment. Conclusion: The ribbonwise bracket-archwire complex reached the moment threshold limits earlier than the conventional complex. When the rotation angle is less than 30°, the ribbonwise bracket-archwire complex generated a greater torque moment in comparison with the conventional complex.Item Computational fluid dynamics analysis of the upper airway after rapid maxillary expansion: a case report(SpringerOpen, 2015-05-24) Ghoneima, Ahmed; AlBarakati, Sahar; Jiang, Feifei; Kula, Katherine; Wasfy, Tamer; Department of Orthodontics and Oral Facial Genetics, IU School of DentistryBACKGROUND: Assessment of the upper airway volume, morphology, and mechanics is of great importance for the orthodontic patient. We hypothesize that upper airway dimensions have significant effects on the dynamics of the airway flow and that both the dimensions and mechanics of the upper airway are greatly affected by orthodontic and orthopedic procedures such as rapid maxillary expansion (RME). The aim of the current study was to assess the effect of RME on the airway flow rate and pattern by comparing the fluid dynamics results of pre- and post-treatment finite element models. METHODS: Customized pre- and post-treatment computational fluid dynamics models of the patient's upper airway were built for comparison based on three-dimensional computed tomogram. The inhalation process was simulated using a constant volume flow rate for both models, and the wall was set to be rigid and stationary. Laminar and turbulent analyses were applied. RESULTS: Comparisons between before and after RME airway volume measurements showed that increases were only detected in nasal cavity volume, nasopharynx volume, and the most constricted area of the airway. Pressure, velocity, and turbulent kinetic energy decreased after dental expansion for laminar and turbulent flow. Turbulent flow shows relatively larger velocity and pressure than laminar flow. CONCLUSIONS: RME showed positive effects that may help understand the key reasons behind relieving the symptom of breathing disorders in this patient. Turbulence occurs at both nasal and oropharynx areas, and it showed relatively larger pressure and velocity compared to laminar flow.Item Dose analysis of photobiomodulation therapy on osteoblast, osteoclast, and osteocyte(SPIE, 2018-07) Na, Sungsoo; TruongVo, ThucNhi; Jiang, Feifei; Joll, Jeffery E.; Guo, Yunxia; Utreja, Achint; Chen, Jie; Biomedical Engineering, School of Engineering and TechnologyThe objective of this study was to evaluate the effects of varying light doses on the viability and cellular activity of osteoblasts, osteocytes, and osteoclasts. A light application device was developed to apply 940-nm wavelength light from light-emitting diodes on three cultured cells, MC3T3-E1, MLO-A5, and RANKL-treated RAW264.7 cells. The doses (energy density) on cells were 0, 1, 5, and 7.5 J / cm2. The corresponding light power densities at the cell site were 0, 1.67, 8.33, and 12.5 mW / cm2, respectively, and the duration was 10 min. The results showed that the three cell types respond differently to light and their responses were dose dependent. Low-dose treatment (1 J / cm2) enhanced osteoblast proliferation, osteoclast differentiation, and osteoclastic bone resorption activity. Osteocyte proliferation was not affected by both low- and high-dose (5 J / cm2) treatments. While 1 J / cm2 did not affect viability of all three cell types, 5 J / cm2 significantly decreased viability of osteocytes and osteoclasts. Osteoblast viability was negatively impacted by the higher dose (7.5 J / cm2). The findings suggest that optimal doses exist for osteoblast and osteoclast, which can stimulate cell activities, and there is a safe dose range for each type of cell tested.Item Estimating the location of the center of resistance of canines(2016-05) Jiang, Feifei; Kula, Katherine; Chen, Jie; Department of Mechanical Engineering, School of Engineering and TechnologyObjective: To develop a method to quickly estimate the location of center of resistance (CR) in mesial-distal (MD) and buccal-lingual (BL) directions from the tooth's image. Materials and Methods: The maxillary cone-beam computed tomography (CBCT) scans of 18 patients were used. Finite element (FE) models of the canines and their surrounding tissues were built based on their CBCT scans to calculate the locations of CR. Root length, centroid of the contact surface (CCS), and centroid of projection of the contact surface (CPCS) were also obtained from the images. The CCS and CPCS locations were projected on the tooth's long axis, which were represented as percentages of the root length measured from the root's apex. Results: Using the FE results as the standards, the errors of using CCS or CPCS to estimate CR were calculated. The average location of CR calculated using the FE method was 60.2% measured from the root’s apex in the MD direction and 58.4% in the BL direction. The location of the CCS was 60.9%. The difference in CR was 0.7% in the MD direction and 2.5% in the BL direction. The location of CPCS was 60.2% in the MD direction and 59.1% in the BL direction, which resulted in a 0.1% and 0.8% difference with the reference CR, respectively. The average difference of CR in the MD and BL directions was small but statistically significant (P < .05). Conclusion: The locations of the CR of a human canine in the MD and BL directions can be estimated by finding the CPCSs in those directions.Item Finite Element Analysis of the Mouse Distal Femur with Tumor Burden in Response to Knee Loading(Medip Academy, 2018) Jiang, Feifei; Liu, Shengzhi; Chen, Andy; Li, Bai-Yan; Robling, Alexander G.; Chen, Jie; Yokota, Hiroki; Mechanical and Energy Engineering, School of Engineering and TechnologyBreast cancer-associated bone metastasis induces bone loss, followed by an increased risk of bone fracture. To develop a strategy for preventing tumor growth and protecting bone, an understanding of the mechanical properties of bone under tumor burden is indispensable. Using a mouse model of mammary tumor, we conducted finite element analysis (FEA) of two bone samples from the distal femur. One sample was from a placebo-treated mouse, and the other was from a mouse treated with the investigational drug candidate, PD407824, an inhibitor of checkpoint kinases. Mechanical testing and microCT images revealed that bone strength is improved by administration of PD407824. In response to loading to the knee, FEA predicted that the peaks of von Mises stress, an indicator of fracture yielding, as well as the third principal compressive stress, were higher in the placebo-treated femur than the drug-treated femur. Higher peak stresses in trabecular segments were observed in the lateral condyle, a critical region for integrity of the knee joint. Collectively, this FE study supports the notion that mechanical weakening of the femur was observed in the tumor-invaded trabecular bone, and chemical agents such as PD407824 may potentially assist in preventing bone loss and bone fracture.Item Finite Element Analysis of the Mouse Proximal Ulna in Response to Elbow Loading(Springer, 2018) Jiang, Feifei; Jalali, Aydin; Deguchi, Chie; Chen, Andy; Liu, Shengzhi; Kondo, Rika; Minami, Kazumasa; Horiuchi, Takashi; Li, Bai-Yan; Robling, Alexander G.; Chen, Jie; Yokota, Hiroki; Mechanical and Energy Engineering, School of Engineering and TechnologyBone is a mechano-sensitive tissue that alters its structure and properties in response to mechanical loading. We have previously shown that application of lateral dynamic loads to a synovial joint, such as the knee and elbow, suppresses degradation of cartilage and prevents bone loss in arthritis and postmenopausal mouse models, respectively. While loading effects on pathophysiology have been reported, mechanical effects on the loaded joint are not fully understood. Because the direction of joint loading is non-axial, not commonly observed in daily activities, strain distributions in the laterally loaded joint are of great interest. Using elbow loading, we herein characterized mechanical responses in the loaded ulna focusing on the distribution of compressive strain. In response to 1-N peak-to-peak loads, which elevate bone mineral density and bone volume in the proximal ulna in vivo, we conducted finite-element analysis and evaluated strain magnitude in three loading conditions. The results revealed that strain of ~ 1000 μstrain (equivalent to 0.1% compression) or above was observed in the limited region near the loading site, indicating that the minimum effective strain for bone formation is smaller with elbow loading than axial loading. Calcein staining indicated that elbow loading increased bone formation in the regions predicted to undergo higher strain.Item Hounsfield unit change in root and alveolar bone during canine retraction(Elsevier, 2015-04) Jiang, Feifei; Liu, Sean S.-Y.; Xia, Zeyang; Li, Shuning; Chen, Jie; Kula, Katherine S.; Eckert, George; Department of Orthodontics and Oral Facial Genetics, IU School of DentistryINTRODUCTION: The objective of this study was to determine the Hounsfield unit (HU) changes in the alveolar bone and root surfaces during controlled canine retractions. METHODS: Eighteen maxillary canine retraction patients were selected for this split-mouth design clinical trial. The canines in each patient were randomly assigned to receive either translation or controlled tipping treatment. Pretreatment and posttreatment cone-beam computed tomography scans of each patient were used to determine tooth movement direction and HU changes. The alveolar bone and root surface were divided into 108 divisions, respectively. The HUs in each division were measured. Mixed-model analysis of variance was applied to test the HU change distribution at the P <0.05 significance level. RESULTS: The HU changes varied with the directions relative to the canine movement. The HU reductions occurred at the root surfaces. Larger reductions occurred in the divisions that were perpendicular to the moving direction. However, HUs decreased in the alveolar bone in the moving direction. The highest HU reduction was at the coronal level. CONCLUSIONS: HU reduction occurs on the root surface in the direction perpendicular to tooth movement and in the alveolar bone in the direction of tooth movement when a canine is retracted.Item Mechanical environment for lower canine T-loop retraction compared to en-masse space closure with a power-arm attached to either the canine bracket or the archwire(EH Angle Education and Research Foundation, 2020-11-01) Jiang, Feifei; Roberts, W. Eugene; Liu, Yanzhi; Shafiee, Abbas; Chen, Jie; Mechanical and Energy Engineering, School of Engineering and TechnologyObjectives: To assess the mechanical environment for three fixed appliances designed to retract the lower anterior segment. Materials and methods: A cone-beam computed tomography scan provided three-dimensional morphology to construct finite element models for three common methods of lower anterior retraction into first premolar extraction spaces: (1) canine retraction with a T-loop, (2) en-masse space closure with the power-arm on the canine bracket (PAB), and (3) power-arm directly attached to the archwire mesial to the canine (PAW). Half of the symmetric mandibular arch was modeled as a linear, isotropic composite material containing five teeth: central incisors (L1), lateral incisor (L2), canine (L3), second premolar (L4), and first molar (L5). Bonded brackets had 0.022-in slots. Archwire and power-arm components were 0.016 × 0.022 in. An initial retraction force of 125 cN was used for all three appliances. Displacements were calculated. Periodontal ligament (PDL) stresses and distributions were calculated for four invariants: maximum principal, minimum principal, von Mises, and dilatational stresses. Results: The PDL stress distributions for the four invariants corresponded to the displacement patterns for each appliance. T-loop tipped the canine(s) and incisors distally. PAB rotated L3 distal in, intruded L2, and extruded L1. PAW distorted the archwire resulting in L3 extrusion as well as lingual tipping of L1 and L2. Maximum stress levels in the PDL were up to 5× greater for the PAW than the T-loop and PAB methods. Conclusions: T-loop of this type is more predictable because power-arms can have rotational and archwire distortion effects that result in undesirable paths of tooth movement.Item Root resorptions associated with canine retraction treatment(Elsevier, 2017-09) Jiang, Feifei; Chen, Jie; Kula, Katherine; Gu, Huiying; Du, Yansheng; Eckert, George; Mechanical and Energy Engineering, School of Engineering and TechnologyINTRODUCTION: The hypothesis of this study was that multiple factors are dominant in causing external apical root resorption (EARR). The objective of this investigation was to better understand the clinical factors that may lead to EARR. METHODS: Maxillary cone-beam computed tomography scans of 18 subjects who were treated with bilateral canine retractions during orthodontics were used to calculate EARR. The subjects were treated using well-calibrated segmental T-loops for delivering a 124-cN retraction force and the moment-to-force ratio suitable for moving the canine under either translation or controlled tipping. The subjects' age, sex, treatment duration, and genotype were collected. RESULTS: Six subjects of the 18 showed definite EARR, meaning that load was not the only causing factor. All 5 subjects with the genotype identified had GG genotype of IL-1β rs11143634, indicating that people with this genotype may be at high risk. Longer treatment duration, female sex, and older age may also contribute to EARR, although the findings were not statistically significant. CONCLUSIONS: EARR appears to be related to multiple factors. The orthodontic load and the genotype should be the focuses for future studies.Item The effects of different types of periodontal ligament material models on stresses computed using finite element models(Elsevier, 2022-12) Wang, Dongcai; Akbari, Amin; Jiang, Feifei; Liu, Yunfeng; Chen, Jie; Mechanical and Energy Engineering, Purdue School of Engineering and TechnologyIntroduction: Finite element (FE) method has been used to calculate stress in the periodontal ligament (PDL), which is crucial in orthodontic tooth movement. The stress depends on the PDL material property, which varies significantly in previous studies. This study aimed to determine the effects of different PDL properties on stress in PDL using FE analysis. Methods: A 3-dimensional FE model was created consisting of a maxillary canine, its surrounding PDL, and alveolar bone obtained from cone-beam computed tomography scans. One Newton of intrusion force was applied vertically to the crown. Then, the hydrostatic stress and the von Mises stress in the PDL were computed using different PDL material properties, including linear elastic, viscoelastic, hyperelastic, and fiber matrix. Young's modulus (E), used previously from 0.01 to 1000 MPa, and 3 Poisson's ratios, 0.28, 0.45, and 0.49, were simulated for the linear elastic model. Results: The FE analyses showed consistent patterns of stress distribution. The high stresses are mostly concentrated at the apical area, except for the linear elastic models with high E (E >15 MPa). However, the magnitude varied significantly from -14.77 to -127.58 kPa among the analyzed patients. The E-stress relationship was not linear. The Poisson's ratio did not affect the stress distribution but significantly influenced the stress value. The hydrostatic stress varied from -14.61 to -95.48 kPa. Conclusions: Different PDL material properties in the FE modeling of dentition do not alter the stress distributions. However, the magnitudes of the stress significantly differ among the patients with the tested material properties.