- Browse by Author
Browsing by Author "Jian, Yajun"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item EPR Study of UV-irradiated Thymidine Microcrystals Supports Radical Intermediates in Spore Photoproduct Formation(ACS, 2016-09) Hayes, Ellen C.; Jian, Yajun; Stoll, Stefan; Li, Lei; Department of Physics, School of ScienceSpore photoproduct is a thymidine dimer formed when bacterial endospore DNA is exposed to ultraviolet (UV) radiation. The mechanism of formation of this thymidine dimer has been proposed to proceed through a radical-pair intermediate. The intermediate forms when a methyl-group hydrogen atom of one thymidine nucleobase is transferred to the C6 position of an adjacent thymidine nucleobase, forming two species, the TCH2 and TH radicals, respectively. Using a series of thymidine isotopologues and electron paramagnetic resonance (EPR) spectroscopy, we show that microcrystals of thymidine exposed to UV radiation produce these two radical species. We observe three sources that donate the additional hydrogen at the C6 position of the TH radical. One of the three sources is the methyl group of another thymidine molecule in a significant fraction of the TH species. This lends support to the radical-pair intermediate proposed in the formation of spore photoproduct.Item Indications of 5′ to 3′ Interbase Electron Transfer as the First Step of Pyrimidine Dimer Formation Probed by a Dinucleotide Analog(Wiley, 2017-06) Jian, Yajun; Maximowitsch, Egle; Adhikari, Surya; Li, Lei; Domratcheva, Tatiana; Chemistry and Chemical Biology, School of SciencePyrimidine dimers are the most common DNA lesions generated under UV radiation. To reveal the molecular mechanisms behind their formation, it is of significance to reveal the roles of each pyrimidine residue. We thus replaced the 5′-pyrimidine residue with a photochemically inert xylene moiety (X). The electron-rich X can be readily oxidized but not reduced, defining the direction of interbase electron transfer (ET). Irradiation of the XpT dinucleotide under 254 nm UV light generates two major photoproducts: a pyrimidine (6-4) pyrimidone analog (6-4PP) and an analog of the so-called spore photoproduct (SP). Both products are formed by reaction at C4=O of the photo-excited 3′-thymidine (T), which indicates that excitation of a single “driver” residue is sufficient to trigger pyrimidine dimerization. Our quantum-chemical calculations demonstrated that photo-excited 3′-T accepts an electron from 5′-X. The resulting charge-separated radical pair lowers its energy upon formation of interbase covalent bonds, eventually yielding 6-4PP and SP.Item Reactivity of Damaged Pyrimidines: DNA Cleavage via Hemiaminal Formation at the C4 Positions of the Saturated Thymine of Spore Photoproduct and Dihydrouridine(American Chemical Society, 2014-09-17) Lin, Gengjie; Jian, Yajun; Dria, Karl J.; Long, Eric C.; Li, Lei; Department of Chemistry & Chemical Biology, School of ScienceDescribed here are mechanistic details of the chemical reactivities of two modified/saturated pyrimidine residues that represent naturally occurring forms of DNA damage: 5-thyminyl-5,6-dihydrothymine, commonly referred to as the “spore photoproduct” (SP), and 5,6-dihydro-2′-deoxyuridine (dHdU), formed via ionizing radiation damage to cytosine under anoxic conditions and also serving as a general model of saturated pyrimidine residues. It is shown that due to the loss of the pyrimidine C5–C6 double bond and consequent loss of ring aromaticity, the C4 position of both these saturated pyrimidines is prone to the formation of a hemiaminal intermediate via water addition. Water addition is facilitated by basic conditions; however, it also occurs at physiological pH at a slower rate. The hemiaminal species so-formed subsequently converts to a ring-opened hydrolysis product through cleavage of the pyrimidine N3–C4 bond. Further decomposition of this ring-opened product above physiological pH leads to DNA strand break formation. Taken together, these results suggest that once the aromaticity of a pyrimidine residue is lost, the C4 position becomes a “hot spot” for the formation of a tetrahedral intermediate, the decay of which triggers a cascade of elimination reactions that can under certain conditions convert a simple nucleobase modification into a DNA strand break.Item Spore photoproduct within DNA is a surprisingly poor substrate for its designated repair enzyme—The spore photoproduct lyase(Elsevier, 2017-04) Yang, Linlin; Jian, Yajun; Setlow, Peter; Li, Lei; Chemistry and Chemical Biology, School of ScienceDNA repair enzymes typically recognize their substrate lesions with high affinity to ensure efficient lesion repair. In UV irradiated endospores, a special thymine dimer, 5-thyminyl-5,6-dihydrothymine, termed the spore photoproduct (SP), is the dominant DNA photolesion, which is rapidly repaired during spore outgrowth mainly by spore photoproduct lyase (SPL) using an unprecedented protein-harbored radical transfer process. Surprisingly, our in vitro studies using SP-containing short oligonucleotides, pUC 18 plasmid DNA, and E. coli genomic DNA found that they are all poor substrates for SPL in general, exhibiting turnover numbers of 0.01–0.2 min−1. The faster turnover numbers are reached under single turnover conditions, and SPL activity is low with oligonucleotide substrates at higher concentrations. Moreover, SP-containing oligonucleotides do not go past one turnover. In contrast, the dinucleotide SP TpT exhibits a turnover number of 0.3–0.4 min−1, and the reaction may reach up to 10 turnovers. These observations distinguish SPL from other specialized DNA repair enzymes. To the best of our knowledge, SPL represents an unprecedented example of a major DNA repair enzyme that cannot effectively repair its substrate lesion within the normal DNA conformation adopted in growing cells. Factors such as other DNA binding proteins, helicases or an altered DNA conformation may cooperate with SPL to enable efficient SP repair in germinating spores. Therefore, both SP formation and SP repair are likely to be tightly controlled by the unique cellular environment in dormant and outgrowing spore-forming bacteria, and thus SP repair may be extremely slow in non-spore-forming organisms.Item An Unexpected Deamination Reaction after Hydrolysis of the Pyrimidine (6-4) Pyrimidone Photoproduct(American Chemical Society, 2014-10-03) Lin, Gengjie; Jian, Yajun; Ouyang, Hao; Li, Lei; Department of Chemistry & Chemical Biology, School of SciencePyrimidine (6-4) pyrimidone photoproduct (6-4PP), a common DNA photolesion formed under solar irradiation, was indicated to hydrolyze under strong basic conditions, breaking the N3–C4 bond at the 5′-thymine. The reanalysis of this reaction revealed that the resulting water adduct may not be stable as previously proposed; it readily undergoes an esterification reaction induced by the 5-OH group at 6-4PP to form a five-membered ring, eliminating a molecule of ammonia.Item Unusually Large Deuterium Discrimination during Spore Photoproduct Formation(0022-3263, 2014-06-06) Ames, David M.; Lin, Gengjie; Jian, Yajun; Cadet, Jean; Li, Lei; Department of Chemistry & Chemical Biology, School of ScienceThe deuterium-labeling strategy has been widely used and proved highly effective in mechanistic investigation of chemical and biochemical reactions. However, it is often hampered by the incomplete label transfer, which subsequently obscures the mechanistic conclusion. During the study of photoinduced generation of 5-thyminyl-5,6-dihydrothymine, which is commonly called the spore photoproduct (SP), the Cadet laboratory found an incomplete (∼67%) deuterium transfer in SP formation, which contrasts to the exclusive transfer observed by the Li laboratory. Here, we investigated this discrepancy by re-examining the SP formation using d3-thymidine. We spiked the d3-thymidine with varying amounts of unlabeled thymidine before the SP photochemistry is performed. Strikingly, our data show that the reaction is highly sensitive to the trace protiated thymidine in the starting material. As many as 17-fold enrichment is detected in the formed SP, which may explain the previously observed one-third protium incorporation. Although commercially available deuterated reagents are generally satisfactory as mechanistic probes, our results argue that attention is still needed to the possible interference from the trace protiated impurity, especially when the reaction yield is low and large isotopic discrimination is involved.