- Browse by Author
Browsing by Author "Ji, Weizhen"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Biallelic CRELD1 variants cause a multisystem syndrome, including neurodevelopmental phenotypes, cardiac dysrhythmias, and frequent infections(Elsevier, 2024) Jeffries, Lauren; Mis, Emily K.; McWalter, Kirsty; Donkervoort, Sandra; Brodsky, Nina N.; Carpier, Jean-Marie; Ji, Weizhen; Ionita, Cristian; Roy, Bhaskar; Morrow, Jon S.; Darbinyan, Armine; Iyer, Krishna; Aul, Ritu B.; Banka, Siddharth; Chao, Katherine R.; Cobbold, Laura; Cohen, Stacey; Custodio, Helena M.; Drummond-Borg, Margaret; Elmslie, Frances; Finanger, Erika; Hainline, Bryan E.; Helbig, Ingo; Hewson, Stacy; Hu, Ying; Jackson, Adam; Josifova, Dragana; Konstantino, Monica; Leach, Meganne E.; Mak, Bryan; McCormick, David; McGee, Elisabeth; Nelson, Stanley; Nguyen, Joanne; Nugent, Kimberly; Ortega, Lucy; Goodkin, Howard P.; Roeder, Elizabeth; Roy, Sani; Sapp, Katie; Saade, Dimah; Sisodiya, Sanjay M.; Stals, Karen; Towner, Shelley; Wilson, William; Deciphering Developmental Disorders; Genomics England Research Consortium; Undiagnosed Disease Network; Khokha, Mustafa K.; Bönnemann, Carsten G.; Lucas, Carrie L.; Lakhani, Saquib A.; Medical and Molecular Genetics, School of MedicinePurpose: We sought to delineate a multisystem disorder caused by recessive cysteine-rich with epidermal growth factor-like domains 1 (CRELD1) gene variants. Methods: The impact of CRELD1 variants was characterized through an international collaboration utilizing next-generation DNA sequencing, gene knockdown, and protein overexpression in Xenopus tropicalis, and in vitro analysis of patient immune cells. Results: Biallelic variants in CRELD1 were found in 18 participants from 14 families. Affected individuals displayed an array of phenotypes involving developmental delay, early-onset epilepsy, and hypotonia, with about half demonstrating cardiac arrhythmias and some experiencing recurrent infections. Most harbored a frameshift in trans with a missense allele, with 1 recurrent variant, p.(Cys192Tyr), identified in 10 families. X tropicalis tadpoles with creld1 knockdown displayed developmental defects along with increased susceptibility to induced seizures compared with controls. Additionally, human CRELD1 harboring missense variants from affected individuals had reduced protein function, indicated by a diminished ability to induce craniofacial defects when overexpressed in X tropicalis. Finally, baseline analyses of peripheral blood mononuclear cells showed similar proportions of immune cell subtypes in patients compared with healthy donors. Conclusion: This patient cohort, combined with experimental data, provide evidence of a multisystem clinical syndrome mediated by recessive variants in CRELD1.Item Correlating genomic copy number alterations with clinicopathologic findings in 75 cases of hepatocellular carcinoma(Springer Nature, 2021-06-08) Peng, Gang; Chai, Hongyan; Ji, Weizhen; Lu, Yufei; Wu, Shengming; Zhao, Hongyu; Li, Peining; Hu, Qiping; Medical and Molecular Genetics, School of MedicineBackground: Oligonucleotide array comparative genomic hybridization (aCGH) analysis has been used for detecting somatic copy number alterations (CNAs) in various types of tumors. This study aimed to assess the clinical utility of aCGH for cases of hepatocellular carcinoma (HCC) and to evaluate the correlation between CNAs and clinicopathologic findings. Methods: aCGH was performed on 75 HCC cases with paired DNA samples from tumor and adjacent nontumor tissues. Survival outcomes from these cases were analyzed based on Barcelona-Clinic Liver Cancer Stage (BCLC), Edmondson-Steiner grade (E-S), and recurrence status. Correlation of CNAs with clinicopathologic findings was analyzed by Wilcoxon rank test and clustering vs. K means. Results: The survival outcomes indicated that BCLC stages and recurrence status could be predictors and E-S grades could be a modifier for HCC. The most common CNAs involved gains of 1q and 8q and a loss of 16q (50%), losses of 4q and 17p and a gain of 5p (40%), and losses of 8p and 13q (30%). Analyses of genomic profiles and clusters identified that losses of 4q13.2q35.2 and 10q22.3q26.13 seen in cases of stage A, grade III and nonrecurrence were likely correlated with good survival, while loss of 1p36.31p22.1 and gains of 2q11.2q21.2 and 20p13p11.1 seen in cases of stage C, grade III and recurrence were possibly correlated with worst prognosis. Conclusions: These results indicated that aCGH analysis could be used to detect recurrent CNAs and involved key genes and pathways in patients with HCC. Further analysis on a large case series to validate the correlation of CNAs with clinicopathologic findings of HCC could provide information to interpret CNAs and predict prognosis.