- Browse by Author
Browsing by Author "Ji, Ronghui"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Genera of integer representations and the Lyndon-Hochschild-Serre spectral sequence(2021-08) Neuffer, Christopher; Ramras, Daniel; Ji, Ronghui; Morton, Patrick; Buse, OlgutaThere has been in the past ten to fifteen years a surge of activity concerning the cohomology of semi-direct product groups of the form $\mathbb{Z}^{n}\rtimes$G with G finite. A problem first stated by Adem-Ge-Pan-Petrosyan asks for suitable conditions for the Lyndon-Hochschild-Serre Spectral Sequence associated to this group extension to collapse at second page of the Lyndon-Hochschild-Serre spectral sequence. In this thesis we use facts from integer representation theory to reduce this problem to only considering representatives from each genus of representations, and establish techniques for constructing new examples in which the spectral sequence collapses.Item Locally compact property A groups(2014-05) Harsy Ramsay, Amanda R.; Ji, RonghuiIn 1970, Serge Novikov made a statement which is now called, "The Novikov Conjecture" and is considered to be one of the major open problems in topology. This statement was motivated by the endeavor to understand manifolds of arbitrary dimensions by relating the surgery map with the homology of the fundamental group of the manifold, which becomes diffi cult for manifolds of dimension greater than two. The Novikov Conjecture is interesting because it comes up in problems in many different branches of mathematics like algebra, analysis, K-theory, differential geometry, operator algebras and representation theory. Yu later proved the Novikov Conjecture holds for all closed manifolds with discrete fundamental groups that are coarsely embeddable into a Hilbert space. The class of groups that are uniformly embeddable into Hilbert Spaces includes groups of Property A which were introduced by Yu. In fact, Property A is generally a property of metric spaces and is stable under quasi-isometry. In this thesis, a new version of Yu's Property A in the case of locally compact groups is introduced. This new notion of Property A coincides with Yu's Property A in the case of discrete groups, but is different in the case of general locally compact groups. In particular, Gromov's locally compact hyperbolic groups is of Property A.