- Browse by Author
Browsing by Author "Jernigan, Robert L."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Computational Ways to Enhance Protein Inhibitor Design(Frontiers Media, 2021-02-03) Jernigan, Robert L.; Sankar, Kannan; Jia, Kejue; Faraggi, Eshel; Kloczkowski, Andrzej; Physics, School of ScienceTwo new computational approaches are described to aid in the design of new peptide-based drugs by evaluating ensembles of protein structures from their dynamics and through the assessing of structures using empirical contact potential. These approaches build on the concept that conformational variability can aid in the binding process and, for disordered proteins, can even facilitate the binding of more diverse ligands. This latter consideration indicates that such a design process should be less restrictive so that multiple inhibitors might be effective. The example chosen here focuses on proteins/peptides that bind to hemagglutinin (HA) to block the large-scale conformational change for activation. Variability in the conformations is considered from sets of experimental structures, or as an alternative, from their simple computed dynamics; the set of designe peptides/small proteins from the David Baker lab designed to bind to hemagglutinin, is the large set considered and is assessed with the new empirical contact potentials.Item Entropy, Fluctuations, and Disordered Proteins(MDPI, 2019-08) Faraggi, Eshel; Dunker, A. Keith; Jernigan, Robert L.; Kloczkowski, Andrzej; Physics, School of ScienceEntropy should directly reflect the extent of disorder in proteins. By clustering structurally related proteins and studying the multiple-sequence-alignment of the sequences of these clusters, we were able to link between sequence, structure, and disorder information. We introduced several parameters as measures of fluctuations at a given MSA site and used these as representative of the sequence and structure entropy at that site. In general, we found a tendency for negative correlations between disorder and structure, and significant positive correlations between disorder and the fluctuations in the system. We also found evidence for residue-type conservation for those residues proximate to potentially disordered sites. Mutation at the disorder site itself appear to be allowed. In addition, we found positive correlation for disorder and accessible surface area, validating that disordered residues occur in exposed regions of proteins. Finally, we also found that fluctuations in the dihedral angles at the original mutated residue and disorder are positively correlated while dihedral angle fluctuations in spatially proximal residues are negatively correlated with disorder. Our results seem to indicate permissible variability in the disordered site, but greater rigidity in the parts of the protein with which the disordered site interacts. This is another indication that disordered residues are involved in protein function.Item Rapid discrimination between deleterious and benign missense mutations in the CAGI 6 experiment(Springer Nature, 2024-08-27) Faraggi, Eshel; Jernigan, Robert L.; Kloczkowski, Andrzej; Physics, School of ScienceWe describe the machine learning tool that we applied in the CAGI 6 experiment to predict whether single residue mutations in proteins are deleterious or benign. This tool was trained using only single sequences, i.e., without multiple sequence alignments or structural information. Instead, we used global characterizations of the protein sequence. Training and testing data for human gene mutations was obtained from ClinVar (ncbi.nlm.nih.gov/pub/ClinVar/), and for non-human gene mutations from Uniprot (www.uniprot.org). Testing was done on post-training data from ClinVar. This testing yielded high AUC and Matthews correlation coefficient (MCC) for well trained examples but low generalizability. For genes with either sparse or unbalanced training data, the prediction accuracy is poor. The resulting prediction server is available online at http://www.mamiris.com/Shoni.cagi6.