ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jen, Freda E.-C."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Self-derived structure-disrupting peptides targeting methionine aminopeptidase in pathogenic bacteria: a new strategy to generate antimicrobial peptides
    (Federation of American Society of Experimental Biology (FASEB), 2019-02) Zhan, Jian; Jia, Husen; Semchenko, Evgeny A.; Bian, Yunqiang; Zhou, Amy M.; Li, Zhixiu; Yang, Yuedong; Wang, Jihua; Sarkar, Sohinee; Totsika, Makrina; Blanchard, Helen; Jen, Freda E.-C.; Ye, Qizhuang; Haselhorst, Thomas; Jennings, Michael P.; Seib, Kate L.; Zhou, Yaoqi; Biochemistry and Molecular Biology, School of Medicine
    Bacterial infection is one of the leading causes of death in young, elderly, and immune-compromised patients. The rapid spread of multi-drug-resistant (MDR) bacteria is a global health emergency and there is a lack of new drugs to control MDR pathogens. We describe a heretofore-unexplored discovery pathway for novel antibiotics that is based on self-targeting, structure-disrupting peptides. We show that a helical peptide, KFF- EcH3, derived from the Escherichia coli methionine aminopeptidase can disrupt secondary and tertiary structure of this essential enzyme, thereby killing the bacterium (including MDR strains). Significantly, no detectable resistance developed against this peptide. Based on a computational analysis, our study predicted that peptide KFF- EcH3 has the strongest interaction with the structural core of the methionine aminopeptidase. We further used our approach to identify peptide KFF- NgH1 to target the same enzyme from Neisseria gonorrhoeae. This peptide inhibited bacterial growth and was able to treat a gonococcal infection in a human cervical epithelial cell model. These findings present an exciting new paradigm in antibiotic discovery using self-derived peptides that can be developed to target the structures of any essential bacterial proteins.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University