- Browse by Author
Browsing by Author "Januleviciene, Ingrida"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Baseline structural characteristics of the optic nerve head and retinal nerve fiber layer are associated with progressive visual field loss in patients with open-angle glaucoma(Public Library of Science, 2020-08-20) Siesky, Brent; Wentz, Scott M.; Januleviciene, Ingrida; Kim, Daniel H.; Burgett, Kendall M.; Vercellin, Alice C. Verticchio; Rowe, Lucas W.; Eckert, George J.; Harris, Alon; Biostatistics, School of Public HealthAims To examine the relationship between baseline structural characteristics of the optic nerve head (ONH) and retinal nerve fiber layer (RNFL) and functional disease progression in patients with open-angle glaucoma (OAG) over 5 years. Methods 112 OAG patients were prospectively examined at baseline and every 6 months over a period of five years. Structural glaucomatous changes were examined with optical coherence tomography (OCT) and Heidelberg retinal tomography-III (HRT-III), and functional disease progression with automated perimetry (Humphrey visual fields). Cox proportional hazard models were used to assess the relationship between baseline structural measurements and functional disease progression. Results From baseline over a 5-year period, statistically significant increases were found in OCT disc (D) area (p<0.001), cup (C) area (p<0.001), C/D area ratio (p<0.001), C/D horizontal ratio (p<0.001), C/D vertical ratio (p = 0.018), and a decrease in superior RNFL thickness (p = 0.008). Statistically significant increases were found in HRT-III C volume (p = 0.021), C/D area ratio (p = 0.046), mean C depth (p = 0.036), C shape (p = 0.008), and height variation contour (p = 0.020). Functional disease progression was detected in 37 of the 112 patients (26 of European descent and 11 of African descent; 33%). A statistically significant shorter time to functional progression was seen in patients with larger baseline OCT D area (p = 0.008), C area (p = 0.003), thicker temporal RNFL (p = 0.003), and in patients with a larger HRT-III C area (p = 0.004), C/D area ratio (p = 0.004), linear C/D ratio (p = 0.007), C shape (p = 0.032), or smaller rim area (p = 0.039), rim volume (p = 0.005), height variation contour (p = 0.041), mean RNFL thickness (p<0.001), or RNFL cross-sectional area (p = 0.002). Conclusion Baseline ONH and RNFL structural characteristics were associated with a significantly shorter time to functional glaucomatous progression and visual field loss through the five-year period in OAG patients.Item The Effect of Diluted Penetration Enhancer in Nebulized Mist versus Liquid Drop Preparation Forms on Retrobulbar Blood Flow in Healthy Human Subjects(MDPI, 2012-08-08) Primus, Sally; Januleviciene, Ingrida; Siesky, Brent; Gerber, Austin; Egan, Patrick; Amireskandari, Annahita; Siaudvytyte, Lina; Barsauskaite, Ruta; Harris, Alon; Ophthalmology, School of MedicineThe aim of this study was to compare the effects of nebulized mist and liquid drop applications on retrobulbar blood flow. A prospective, non-randomized clinical trial was used to collect data from 40 healthy human eyes. Color Doppler Imaging determined peak systolic (PSV) and end diastolic (EDV) blood flow velocities and resistance index (RI) in the ophthalmic artery after both applications. Measurements were taken at baseline and at 1 min post-treatment in both eyes with 5 min measurements in the treatment eye only. p values ≤ 0.05 were considered statistically significant. Mist application to treatment eye produced an increase in 1 min and 5 min PSV and EDV (0.001 < p < 0.03) and a decrease in 5 min RI (p = 0.01), with no significant changes in PSV, EDV or RI of control eye or in treatment eye 1 min RI (p > 0.05). Drop application to treatment eye produced an increase in PSV (p < 0.001) and EDV (p = 0.01) at 1 min, with an increase in control eye 1 min PSV and EDV (p = 0.03). There were no statistically significant changes in treatment eye PSV, EDV and RI after 5 min (p > 0.05). The use of nebulized mist may provide an effective alternative to liquid drop medication application.Item Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance(Association for Research in Vision and Opthalmology, 2014-07) Guidoboni, Giovanna; Harris, Alon; Cassani, Simone; Arciero, Julia; Siesky, Brent; Amireskandari, Annahita; Tobe, Leslie; Egan, Patrick; Januleviciene, Ingrida; Park, Joshua; Department of Mathematical Sciences, School of SciencePURPOSE: This study investigates the relationship between intraocular pressure (IOP) and retinal hemodynamics and predicts how arterial blood pressure (BP) and blood flow autoregulation (AR) influence this relationship. METHODS: A mathematical model is developed to simulate blood flow in the central retinal vessels and retinal microvasculature as current flowing through a network of resistances and capacitances. Variable resistances describe active and passive diameter changes due to AR and IOP. The model is validated by using clinically measured values of retinal blood flow and velocity. The model simulations for six theoretical patients with high, normal, and low BP (HBP-, NBP-, LBP-) and functional or absent AR (-wAR, -woAR) are compared with clinical data. RESULTS: The model predicts that NBPwAR and HBPwAR patients can regulate retinal blood flow (RBF) as IOP varies between 15 and 23 mm Hg and between 23 and 29 mm Hg, respectively, whereas LBPwAR patients do not adequately regulate blood flow if IOP is 15 mm Hg or higher. Hemodynamic alterations would be noticeable only if IOP changes occur outside of the regulating range, which, most importantly, depend on BP. The model predictions are consistent with clinical data for IOP reduction via surgery and medications and for cases of induced IOP elevation. CONCLUSIONS: The theoretical model results suggest that the ability of IOP to induce noticeable changes in retinal hemodynamics depends on the levels of BP and AR of the individual. These predictions might help to explain the inconsistencies found in the clinical literature concerning the relationship between IOP and retinal hemodynamics.Item Prevalence Rates and Risk Factors for Primary Open Angle Glaucoma in the Middle East(Knowledge E, 2021-10-25) Torabi, Rana; Harris, Alon; Siesky, Brent; Zukerman, Ryan; Oddone, Francesco; Mathew, Sunu; Januleviciene, Ingrida; Verticchio Vercellin, Alice C.; Ophthalmology, School of MedicineGlaucoma is a multifactorial disease and a leading cause of irreversible blindness worldwide. Current data has demonstrated the approximate distribution of primary open-angle glaucoma (POAG) in patients of European, African, Hispanic, and Eastern Asian descent. However, a significant gap in the literature exists regarding the prevalence of POAG in Middle Eastern (ME) populations. Current studies estimate ME POAG prevalence based on a European model. Herein we screened 65 total publications on ME prevalence of POAG and specific risk factors using keywords: “glaucoma”, “prevalence”, “incidence”, “risk factor”, “Middle East”, “Mideast”, “Persian”, “Far East”, as well as searching by individual ME countries through PubMed, Embase, Ovid, Scopus, and Trip searches with additional reference list searches from relevant articles published up to and including March 1, 2021. Fifty qualifying records were included after 15 studies identified with low statistical power, confounding co-morbid ophthalmic diseases, and funding bias were excluded. Studies of ME glaucoma risk factors that identify chromosomes, familial trend, age/gender, socioeconomic status, lifestyle, intraocular pressure, vascular influences, optic disc hemorrhage, cup-to-disc ratio, blood pressure, obstructive sleep apnea, and diabetes mellitus were included in this systematic review. We conclude that the prevalence of POAG in the ME is likely higher than the prevalence rate that European models suggest, with ME specific risk factors likely playing a role. However, these findings are severely limited by the paucity of population-level data in the ME. Well-designed, longitudinal population-based studies with rigorous inclusion and exclusion criteria are ultimately needed to accurately assess the epidemiology and specific mechanistic risk factors of glaucoma in ME populations.Item Topical carbonic anhydrase inhibitors and glaucoma in 2021: where do we stand?(BMJ Publishing, 2022) Stoner, Ari; Harris, Alon; Oddone, Francesco; Belamkar, Aditya; Verticchio Vercellin, Alice Chandra; Shin, Joshua; Januleviciene, Ingrida; Siesky, Brent; Ophthalmology, School of MedicineCarbonic anhydrase inhibitors (CAIs) have been used for many decades in the treatment of glaucoma. Systemic CAIs were an early treatment option to lower intraocular pressure by reducing aqueous humour production; however, frequent side effects including polyuria and paresthesia contributed to the eventual development of topical CAIs. As topical drug development evolved over time, prostaglandin analogues and beta-blockers have become the gold standard of glaucoma therapies. Although prescribed less often than other classes of topical glaucoma therapies, topical CAIs continue to be used in combination therapies with beta-blockers and alpha agonists. Topical CAIs have also been demonstrated to alter biomarkers of ocular haemodynamics, which have relevance in glaucoma. The purpose of this review is to review and summarise the current state of topical CAI prescribing trends, known efficacy and suggested mechanisms and potential influence on ocular haemodynamics for the future of glaucoma management.Item Update in intracranial pressure evaluation methods and translaminar pressure gradient role in glaucoma(Wiley, 2015-02) Siaudvytyte, Lina; Januleviciene, Ingrida; Ragauskas, Arminas; Bartusis, Laimonas; Siesky, Brent; Harris, Alon; Department of Cellular & Integrative Physiology, IU School of MedicineGlaucoma is one of the leading causes of blindness worldwide. Historically, it has been considered an ocular disease primary caused by pathological intraocular pressure (IOP). Recently, researchers have emphasized intracranial pressure (ICP), as translaminar counter pressure against IOP may play a role in glaucoma development and progression. It remains controversial what is the best way to measure ICP in glaucoma. Currently, the ‘gold standard’ for ICP measurement is invasive measurement of the pressure in the cerebrospinal fluid via lumbar puncture or via implantation of the pressure sensor into the brains ventricle. However, the direct measurements of ICP are not without risk due to its invasiveness and potential risk of intracranial haemorrhage and infection. Therefore, invasive ICP measurements are prohibitive due to safety needs, especially in glaucoma patients. Several approaches have been proposed to estimate ICP non-invasively, including transcranial Doppler ultrasonography, tympanic membrane displacement, ophthalmodynamometry, measurement of optic nerve sheath diameter and two-depth transcranial Doppler technology. Special emphasis is put on the two-depth transcranial Doppler technology, which uses an ophthalmic artery as a natural ICP sensor. It is the only method which accurately and precisely measures absolute ICP values and may provide valuable information in glaucoma.