ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jansen, Philip R."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Genetic associations with childhood brain growth, defined in two longitudinal cohorts
    (Wiley, 2018-06) Szekely, Eszter; Schwantes-An, Tae-Hwi Linus; Justice, Cristina M.; Sabourin, Jeremy A.; Jansen, Philip R.; Muetzel, Ryan L.; Sharp, Wendy; Tiemeier, Henning; Sung, Heejong; White, Tonya J.; Wilson, Alexander F.; Shaw, Philip; Medical and Molecular Genetics, School of Medicine
    Genome-wide association studies (GWASs) are unraveling the genetics of adult brain neuroanatomy as measured by cross-sectional anatomic magnetic resonance imaging (aMRI). However, the genetic mechanisms that shape childhood brain development are, as yet, largely unexplored. In this study we identify common genetic variants associated with childhood brain development as defined by longitudinal aMRI. Genome-wide single nucleotide polymorphism (SNP) data were determined in two cohorts: one enriched for attention-deficit/hyperactivity disorder (ADHD) (LONG cohort: 458 participants; 119 with ADHD) and the other from a population-based cohort (Generation R: 257 participants). The growth of the brain's major regions (cerebral cortex, white matter, basal ganglia, and cerebellum) and one region of interest (the right lateral prefrontal cortex) were defined on all individuals from two aMRIs, and a GWAS and a pathway analysis were performed. In addition, association between polygenic risk for ADHD and brain growth was determined for the LONG cohort. For white matter growth, GWAS meta-analysis identified a genome-wide significant intergenic SNP (rs12386571, P = 9.09 × 10-9 ), near AKR1B10. This gene is part of the aldo-keto reductase superfamily and shows neural expression. No enrichment of neural pathways was detected and polygenic risk for ADHD was not associated with the brain growth phenotypes in the LONG cohort that was enriched for the diagnosis of ADHD. The study illustrates the use of a novel brain growth phenotype defined in vivo for further study.
  • Loading...
    Thumbnail Image
    Item
    Uncovering the genetic architecture of broad antisocial behavior through a genome-wide association study meta-analysis
    (Springer Nature, 2022) Tielbeek, Jorim J.; Uffelmann, Emil; Williams, Benjamin S.; Colodro-Conde, Lucía; Gagnon, Éloi; Mallard, Travis T.; Levitt, Brandt E.; Jansen, Philip R.; Johansson, Ada; Sallis, Hannah M.; Pistis, Giorgio; Saunders, Gretchen R. B.; Allegrini, Andrea G.; Rimfeld, Kaili; Konte, Bettina; Klein, Marieke; Hartmann, Annette M.; Salvatore, Jessica E.; Nolte, Ilja M.; Demontis, Ditte; Malmberg, Anni L. K.; Burt, S. Alexandra; Savage, Jeanne E.; Sugden, Karen; Poulton, Richie; Mullan Harris, Kathleen; Vrieze, Scott; McGue, Matt; Iacono, William G.; Roth Mota, Nina; Mill, Jonathan; Viana, Joana F.; Mitchell, Brittany L.; Morosoli, Jose J.; Andlauer, Till F. M.; Ouellet-Morin, Isabelle; Tremblay, Richard E.; Côté, Sylvana M.; Gouin, Jean-Philippe; Brendgen, Mara R.; Dionne, Ginette; Vitaro, Frank; Lupton, Michelle K.; Martin, Nicholas G.; COGA Consortium; Spit for Science Working Group; Castelao, Enrique; Räikkönen, Katri; Eriksson, Johan G.; Lahti, Jari; Hartman, Catharina A.; Oldehinkel, Albertine J.; Snieder, Harold; Liu, Hexuan; Preisig, Martin; Whipp, Alyce; Vuoksimaa, Eero; Lu, Yi; Jern, Patrick; Rujescu, Dan; Giegling, Ina; Palviainen, Teemu; Kaprio, Jaakko; Harden, Kathryn Paige; Munafò, Marcus R.; Morneau-Vaillancourt, Geneviève; Plomin, Robert; Viding, Essi; Boutwell, Brian B.; Aliev, Fazil; Dick, Danielle M.; Popma, Arne; Faraone, Stephen V.; Børglum, Anders D.; Medland, Sarah E.; Franke, Barbara; Boivin, Michel; Pingault, Jean-Baptiste; Glennon, Jeffrey C.; Barnes, J. C.; Fisher, Simon E.; Moffitt, Terrie E.; Caspi, Avshalom; Polderman, Tinca J. C.; Posthuma, Danielle; Medical and Molecular Genetics, School of Medicine
    Despite the substantial heritability of antisocial behavior (ASB), specific genetic variants robustly associated with the trait have not been identified. The present study by the Broad Antisocial Behavior Consortium (BroadABC) meta-analyzed data from 28 discovery samples (N = 85,359) and five independent replication samples (N = 8058) with genotypic data and broad measures of ASB. We identified the first significant genetic associations with broad ASB, involving common intronic variants in the forkhead box protein P2 (FOXP2) gene (lead SNP rs12536335, p = 6.32 × 10-10). Furthermore, we observed intronic variation in Foxp2 and one of its targets (Cntnap2) distinguishing a mouse model of pathological aggression (BALB/cJ strain) from controls (BALB/cByJ strain). Polygenic risk score (PRS) analyses in independent samples revealed that the genetic risk for ASB was associated with several antisocial outcomes across the lifespan, including diagnosis of conduct disorder, official criminal convictions, and trajectories of antisocial development. We found substantial genetic correlations of ASB with mental health (depression rg = 0.63, insomnia rg = 0.47), physical health (overweight rg = 0.19, waist-to-hip ratio rg = 0.32), smoking (rg = 0.54), cognitive ability (intelligence rg = -0.40), educational attainment (years of schooling rg = -0.46) and reproductive traits (age at first birth rg = -0.58, father's age at death rg = -0.54). Our findings provide a starting point toward identifying critical biosocial risk mechanisms for the development of ASB.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University