- Browse by Author
Browsing by Author "James, Bryan D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Awareness of Genetic Risk in the Dominantly Inherited Alzheimer Network (DIAN)(Wiley, 2020-01) Aschenbrenner, Andrew J.; James, Bryan D.; McDade, Eric; Wang, Guoqiao; Lim, Yen Ying; Benzinger, Tammie L.S.; Cruchaga, Carlos; Goate, Alison; Xiong, Chengjie; Perrin, Richard; Buckles, Virginia; Allegri, Ricardo; Berman, Sarah B.; Chhatwal, Jasmeer P.; Fagan, Anne; Farlow, Martin; O'Connor, Antoinette; Ghetti, Bernardino; Graff-Radford, Neill; Goldman, Jill; Gräber, Susanne; Karch, Celeste M.; Lee, Jae-Hong; Levin, Johannes; Martins, Ralph N.; Masters, Colin; Mori, Hiroshi; Noble, James; Salloway, Stephen; Schofield, Peter; Morris, John C.; Bateman, Randall J.; Hassenstab, Jason; Neurology, School of MedicineIntroduction: Although some members of families with autosomal dominant Alzheimer's disease mutations learn their mutation status, most do not. How knowledge of mutation status affects clinical disease progression is unknown. This study quantifies the influence of mutation awareness on clinical symptoms, cognition, and biomarkers. Methods: Mutation carriers and non-carriers from the Dominantly Inherited Alzheimer Network (DIAN) were stratified based on knowledge of mutation status. Rates of change on standard clinical, cognitive, and neuroimaging outcomes were examined. Results: Mutation knowledge had no associations with cognitive decline, clinical progression, amyloid deposition, hippocampal volume, or depression in either carriers or non-carriers. Carriers who learned their status mid-study had slightly higher levels of depression and lower cognitive scores. Discussion: Knowledge of mutation status does not affect rates of change on any measured outcome. Learning of status mid-study may confer short-term changes in cognitive functioning, or changes in cognition may influence the determination of mutation status.Item Combined neuropathological pathways account for age-related risk of dementia(Wiley, 2018-07) Power, Melinda C.; Mormino, Elizabeth; Soldan, Anja; James, Bryan D.; Yu, Lei; Armstrong, Nicole M.; Bangen, Katherine J.; Delano-Wood, Lisa; Lamar, Melissa; Lim, Yen Ying; Nudelman, Kelly; Zahodne, Laura; Gross, Alden L.; Mungas, Dan; Widaman, Keith F.; Schneider, Julie; Radiology and Imaging Sciences, School of MedicineOBJECTIVE: Our objectives were to characterize the inter-relation of known dementia-related neuropathologies in one comprehensive model and quantify the extent to which accumulation of neuropathologies accounts for the association between age and dementia. METHODS: We used data from 1,362 autopsied participants of three community-based clinicopathological cohorts: the Religious Orders Study, the Rush Memory and Aging Project, and the Minority Aging Research Study. We estimated a series of structural equation models summarizing a priori hypothesized neuropathological pathways between age and dementia risk individually and collectively. RESULTS: At time of death (mean age, 89 years), 44% of our sample had a clinical dementia diagnosis. When considered individually, our vascular, amyloid/tau, neocortical Lewy body, and TAR DNA-binding protein 43 (TDP-43)/hippocampal sclerosis pathology pathways each accounted for a substantial proportion of the association between age and dementia. When considered collectively, the four pathways fully accounted for all variance in dementia risk previously attributable to age. Pathways involving amyloid/tau, neocortical Lewy bodies, and TDP-43/hippocampal sclerosis were interdependent, attributable to the importance of amyloid beta plaques in all three. The importance of the pathways varied, with the vascular pathway accounting for 32% of the association between age and dementia, wheraes the remaining three inter-related degenerative pathways together accounted for 68% (amyloid/tau, 24%; the Lewy body, 1%; and TDP-43/hippocampal sclerosis, 43%). INTERPRETATION: Age-related increases in dementia risk can be attributed to accumulation of multiple pathologies, each of which contributes to dementia risk. Multipronged approaches may be necessary if we are to develop effective therapies.