- Browse by Author
Browsing by Author "Jahan, Suchana"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Framework for Estimating Mold Performance Using Experimental and Numerical Analysis of Injection Mold Tooling Prototypes(Springer, 2019) Jahan, Suchana; El-Mounayri, Hazim; Tovar, Andres; Shin, Yung C.; Mechanical Engineering and Energy, School of Engineering and TechnologyAdditive Manufacturing (AM), 3D printing, rapid prototyping, or rapid tooling refer to a range of technologies that are capable of translating virtual CAD model data into physical model. It is executed in growing number of applications nowadays. A wide range of materials are currently being used to produce consumer products and production tools. AM has brought in revolutionary changes in traditional manufacturing practices. Yet, there are certain drawbacks that hinder its advancement at mass manufacturing. High cost associated with AM is one of them. Using 3D printed tooling can provide long-time cost effectiveness and better product quality. Additively manufactured injection molds can increase the cooling performance, reduce production cycle time, and improve surface finish and part quality of the final plastic product. Yet, manufacturers are still not using the printed molds for industrial mass production. Numerical analysis can provide approximation of such improved performance, but, factual experimental results are necessary to satisfy performance criteria of molds to justify the large investment into tooling for existing industries. In this research work, a desktop injection molding machine is used to evaluate performance of 3D printed molds to develop a cost and performance analysis tool. It serves as a baseline to predict the performance of molds in real-time mass manufacturing of consumer products. The analysis describes how appropriate the estimation can be from any simulation study of molds, how much the scaling down of tool and molding system can affect the prediction of actual performance, what correction factors can be used for better approximation of performance matrices. Several “scaled down” prototypes of injection molds have been used. They have design variations as: with or without cooling system, conformal or straight cooling channels, solid or lattice matrix, and metal or tough resin as the mold material. The molds are printed in in-house printing machines and can also be printed online with limited charges. This also provides an excellent demonstration of using inexpensive material and manufacturing process, such as resin to estimate the performance of highly expensive 3D printed stainless steel molds. The work encompasses a framework to reduce overall cost of implementing AM, by lowering time and monetary expenses during the research and development, and prototyping phases.Item Thermo-fluid Topology Optimization and Experimental Study of Conformal Cooling Channels for 3D Printed Plastic Injection Molds(Elsevier, 2019) Jahan, Suchana; Wu, Tong; Shin, Yung; Tovar, Andres; El-Mounayri, Hazim; Mechanical and Energy Engineering, School of Engineering and TechnologyWith the advent of additive manufacturing, innovative design methods, such as network-based techniques, and structural topology optimization have been used to generate complex and highly efficient cooling systems in recent years. However, methods that incorporate coupled thermal and fluid analysis remain scarce. In this paper, a coupled thermal-fluid topology optimization algorithm is introduced for the design of conformal cooling channels. The problem is formulated based on a coupling of Navier- Stokes equations and convection-diffusion equation. The problem is solved by gradient-based optimization after analytical sensitivity derived using adjoint method. With this method, the channel position problem is replaced to a material distribution problem. The material distribution directly depends on the effect of flow resistance, heat conduction, natural and forced convection. The algorithm leads to a two-dimensional conceptual design having optimal heat transfer and balanced flow, which is further transformed into three-dimensional cooling channel design. Here, a comprehensive study is presented, starting from design, simulation, 3D printing process and experimental testing of an injection mold with conformal cooling channels in industrial production environment. A traditional mold model is provided by an industrial collaborator. To enhance the overall thermo-fluid performance of the mold and improve final product quality, a redesign of this mold core is done with conformal cooling channels inside. The final design is 3D printed in pre-alloyed tool-steel powder Maraging Steel using Truprint 3000 metal 3D printing machine. The printed core required some heat treatment and finishing processes and added features to be incorporated to make it production ready. Once all the preparation was complete, the core was tested experimentally in a multicavity injection molding machine in real industrial environment at our industrial partner’s production facility. This paper describes all the steps starting from design, analysis, die 3D printing and finally ending at final experimental testing, as well as recommendations for tool designer and injection molding industry to implement additive manufacturing for their benefit. This paper is not just focused on a specific aspect such as design, simulation or manufacturing, but rather a comprehensive paper presenting a case study on implementation of topology optimization and additive manufacturing in real life industrial production scenario.