- Browse by Author
Browsing by Author "Jacinthe, Pierre-Andre"
Now showing 1 - 10 of 22
Results Per Page
Sort Options
Item A Landsat-derived annual inland water clarity dataset of China between 1984 and 2018(Copernicus, 2022-01-13) Tao, Hui; Song, Kaishan; Liu, Ge; Wang, Qiang; Wen, Zhidan; Jacinthe, Pierre-Andre; Xu, Xiaofeng; Du, Jia; Shang, Yingxin; Li, Sijia; Wang, Zongming; Lyu, Lili; Hou, Junbin; Wang, Xiang; Liu, Dong; Shi, Kun; Zhang, Baohua; Duan, Hongtao; Earth and Environmental Sciences, School of ScienceWater clarity serves as a sensitive tool for understanding the spatial pattern and historical trend in lakes' trophic status. Despite the wide availability of remotely sensed data, this metric has not been fully explored for long-term environmental monitoring. To this end, we utilized Landsat top-of-atmosphere reflectance products within Google Earth Engine in the period 1984–2018 to retrieve the average Secchi disk depth (SDD) for each lake in each year. Three SDD datasets were used for model calibration and validation from different field campaigns mainly conducted during 2004–2018. The red blue band ratio algorithm was applied to map SDD for lakes (>0.01 km2) based on the first SDD dataset, where R2=0.79 and relative RMSE (rRMSE) =61.9 %. The other two datasets were used to validate the temporal transferability of the SDD estimation model, which confirmed the stable performance of the model. The spatiotemporal dynamics of SDD were analyzed at the five lake regions and individual lake scales, and the average, changing trend, lake number and area, and spatial distribution of lake SDDs across China were presented. In 2018, we found the number of lakes with SDD <2 m accounted for the largest proportion (80.93 %) of the total lakes, but the total areas of lakes with SDD of <0.5 and >4 m were the largest, both accounting for about 24.00 % of the total lakes. During 1984–2018, lakes in the Tibetan–Qinghai Plateau region (TQR) had the clearest water with an average value of 3.32±0.38 m, while that in the northeastern region (NLR) exhibited the lowest SDD (mean 0.60±0.09 m). Among the 10 814 lakes with SDD results for more than 10 years, 55.42 % and 3.49 % of lakes experienced significant increasing and decreasing trends, respectively. At the five lake regions, except for the Inner Mongolia–Xinjiang region (MXR), more than half of the total lakes in every other region exhibited significant increasing trends. In the eastern region (ELR), NLR and Yungui Plateau region (YGR), almost more than 50 % of the lakes that displayed increase or decrease in SDD were mainly distributed in the area range of 0.01–1 km2, whereas those in the TQR and MXR were primarily concentrated in large lakes (>10 km2). Spatially, lakes located in the plateau regions generally exhibited higher SDD than those situated in the flat plain regions. The dataset is freely available at the National Tibetan Plateau Data Center (https://doi.org/10.11888/Hydro.tpdc.271571, Tao et al., 2021).Item ASSESSING THE ROLE OF GEOLOGIC SETTING ON THE HYDROLOGY AND GROUND WATER GEOCHEMISTRY OF FENS IN THE GLACIATED MIDWESTERN UNITED STATES(2007-04-09T15:32:10Z) Graves, Dustin; Tedesco, Lenore P.; Vidon, Philippe G.; Jacinthe, Pierre-AndreABSTRACT Dustin Graves ASSESSING THE ROLE OF GEOLOGIC SETTING ON THE HYDROLOGY AND GROUND WATER GEOCHEMISTRY OF FENS IN THE GLACIATED MIDWESTERN UNITED STATES A water quality investigation of several fens located in the temperate glaciated Midwestern United States, near the southern limit of fen occurrence, was conducted to assess the role of geologic setting on the hydrogeochemical signature of fens and to compare hydrogeochemistry of fens located in different geographic and geologic settings. The five studied fens, located in the Central Till Plain physiographic region of Indiana, receive ground water sourced from glacial tills with very similar petrologic composition. These wetlands are hydrogeomorphically classified as slope wetlands with dominant ground water input. More specifically, these sites are inter-till / intra-till type fens (Type Ia and Ib) or outwash terrace type fens (Type II). Shallow ground water was collected just prior to surface interception (source water), and again after discharging into each fen (fen water) and measured for a suite of cations (Ca2+, Mg2+, K+, Na+) and anions (HCO3- SO42-, NO3-, NO2-, PO43-, and Cl-). Fen water hydroperiods showed similar dynamics, despite some variation in the hydrologic input of these systems (source water). Central Indiana fens are recognized as Ca2+, Mg2+, and HCO3- dominated systems. Fen water showed substantial evolution from source water at each study site, evidently the result of carbonate and gypsum dissolution dynamics. However, when only fen water is analyzed, results suggest that ground water of the southern fens represents geochemical similarity, with the exception of anthropogenic influence. The greatest geochemical variation among central Indiana fens can be attributed to Na+ and Cl-, which has been linked to road salt contamination at two of the study sites. This hydrogeochemical study also reveals that fens (slope wetlands) within this particular geologic setting of central Indiana show strong geochemical similarities to fens located throughout the temperate Northern Hemisphere. However, statistical analyses provide evidence that the parameters of Ca2+, HCO3-, and SO42- account for the greatest variation among these wetland communities, suggesting that calcium carbonate and gypsum dissolution dynamics are primarily fen specific while other parameters remain relatively homogenous across a wide geographical range. Lenore P. Tedesco, Ph. D.Item Attributes of Organic Phosphorus Exported from a Central Indiana Agricultural Watershed: Effects of Season and Hydrologic Flowpath(2023-05) Pitcock, Rebecca Jo; Jacinthe, Pierre-Andre; Filippelli, Gabriel; Wang, LixinThe export of phosphorus (P) from agricultural watersheds has been extensively investigated but monitoring efforts have generally focused on inorganic P (Pi or soluble reactive phosphorus [SRP]), the P fraction thought to be immediately available to algae. However, in settings where no-till management is implemented and organic matter accumulates on soil surface, the amount of organic P (Po) in agricultural drainage waters can be significant and may represent another important P source to fuel algal growth in receiving water bodies. From a 2018 monitoring study at a Central Indiana agricultural watershed, measured total P and SRP loss amounted to 1.22 and 0.17 kg P/ha/year, respectively, indicating that the bulk (84%) of P exported from that watershed was in organic form. Results also showed that tile drainage was the main pathway for P transport (96% of Po loss). In light of these observations, the bioavailability of Po in agricultural drainage waters was investigated in 2019, and the effect of hydrologic flow path (surface versus subsurface flow) on the biochemical attributes of Po was examined. In these assessments, the iron strip method and a suite of enzymatic assays were used to gain a better understanding of the chemical composition of the exported Po. Higher concentration of labile Po was consistently measured in tile discharge than in surface runoff (59% versus 38% of the total bioavailable P). Further, the concentration of EHP (enzymatically hydrolysable P), in the form of monoester, diester, and phytate compounds, was highest during the summer season, for both tile and surface pathways. This elevated bioavailability of Po during the summer is a concern because, in combination with favorable water temperature and solar radiation during that period, this could lead to enhanced Po mineralization and release of Pi, resulting in further algal proliferation and continued degradation of water quality. Considering the high prevalence of tile drainage in agricultural landscapes of the US Midwest, this finding underscores the need for further investigation of the impact of land management and climate on the speciation and bioavailability of Po in the region’s agricultural waters.Item Climate-driven variations in suspended particulate matter dominate water clarity in shallow lakes.(Optica, 2022-01) Fang, Chong; Jacinthe, Pierre-Andre; Song, Changchun; Zhang, Chi; Song, Kaishan; Earth Science, School of ScienceSecchi disk depth (SDD) has long been considered as a reliable proxy for lake clarity, and an important indicator of the aquatic ecosystems. Meteorological and anthropogenic factors can affect SDD, but the mechanism of these effects and the potential control of climate change are poorly understood. Preliminary research at Lake Khanka (international shallow lake on the China-Russia border) had led to the hypothesis that climatic factors, through their impact on suspended particulate matter (SPM) concentration, are key drivers of SDD variability. To verify the hypothesis, Landsat and MODIS images were used to examine temporal trend in these parameters. For that analysis, the novel SPM index (SPMI) was developed, through incorporation of SPM concentration effect on spectral radiance, and was satisfactorily applied to both Landsat (R= 0.70, p < 0.001) and MODIS (R= 0.78, p < 0.001) images to obtain remote estimates of SPM concentration. Further, the SPMI algorithm was successfully applied to the shallow lakes Hulun, Chao and Hongze, demonstrating its portability. Through analysis of the temporal trend (1984-2019) in SDD and SPM, this study demonstrated that variation in SPM concentration was the dominant driver (explaining 63% of the variation as opposed to 2% due to solar radiation) of SDD in Lake Khanka, thus supporting the study hypothesis. Furthermore, we speculated that variation in wind speed, probably impacted by difference in temperature between lake surface and surrounding landscapes (greater difference between 1984-2009 than after 2010), may have caused varying degree of sediment resuspension, ultimately controlling SPM and SDD variation in Lake Khanka.Item Conservation tillage increases corn and soybean water productivity across the Ohio River Basin(Elsevier, 2021-08) Huang, Yawen; Tao, Bo; Xiaochen, Zhu; Yang, Yanjun; Liang, Liang; Wang, Lixin; Jacinthe, Pierre-Andre; Tian, Hanqin; Ren, Wei; Earth Sciences, School of ScienceOptimizing agricultural management practices is imperative for ensuring food security and building climate-resilient agriculture. The past several decades have witnessed the emergence of conservation tillage practices to combat soil erosion and degradation. However, the effects of conservation tillage on crop water productivity (CWP) remain uncertain, especially from a regional-scale perspective. Here, we used an improved process-based agroecosystem model (DLEM-Ag) to quantify the long-term effects of conservation tillage (e.g., no-tillage, NT; reduced tillage, RT) on CWP (defined as the ratio of crop productivity to evapotranspiration) of corn and soybean across the Ohio River Basin during 1979–2018. Our results revealed an average increase of 2.8% and 8.4% in CWP for corn and soybean, respectively, under the NT adoption scenario. Compared to the conventional tillage scenario, NT and RT would enhance CWP, primarily due to reductions in evapotranspiration, particularly evaporation. Further analysis suggested that, although NT and RT may decrease surface runoff, these practices could also increase subsurface drainage and nutrient loss from corn and soybean farmland via leaching. These results indicate that conservation tillage should be complemented with additional water and nutrient management practices to enhance soil water retention and optimize nutrient use in the region's cropland. Our findings also provide unique insights into optimizing management practices for other areas where conservation tillage is widely applied.Item Coupled biogeochemical cycles in riparian zones with contrasting hydrogeomorphic characteristics in the US Midwest(2013-12-11) Liu, Xiaoqiang; Vidon, Philippe G.; Jacinthe, Pierre-Andre; Babbar-Sebens, MeghnaNumerous studies have investigated the fate of pollutants in riparian buffers, but few studies have focused on the control of multiple contaminants simultaneously in riparian zones. To better understand what drives the biogeochemical cycles of multiple contaminants in riparian zones, a 19-month study was conducted in riparian buffers across a range of hydrogeomorphic (HGM) settings in the White River watershed in Indiana. Three research sites [Leary Webber Ditch (LWD), Scott Starling (SS) and White River (WR)] with contrasting hydro-geomorphology were selected. We monitored groundwater table depth, oxidation reduction potential (ORP), dissolved oxygen (DO), dissolved organic carbon (DOC), NO3-, NH4+, soluble reactive phosphorus (SRP), SO42- , total Hg and methylmercury (MeHg). Our results revealed that differences in HGM conditions translated into distinctive site hydrology, but significant differences in site hydrology did not lead to different biogeochemical conditions. Nitrate reduction and sulfate re-oxidation were likely associated with major hydrological events, while sulfate reduction, ammonia and methylmercury production were likely associated with seasonal changes in biogeochemical conditions. Results also suggest that the LWD site was a small sink for nitrate but a source for sulfate and MeHg, the SS site was a small sink for MeHg but had little effect on NO3-, SO42- and SRP, and the WR was an intermediate to a large sink for nitrate, an intermediate sink for SRP, and a small source for MeHg. Land use and point source appears to have played an important role in regulating solute concentrations (NO3-, SRP and THg). Thermodynamic theories probably oversimplify the complex patterns of solute dynamics which, at the sites monitored in the present study, were more strongly impacted by HGM settings, land use, and proximity to a point source.Item Effect of Soil Type and Fertilizer Application Timing on Phosphorus Leaching From Gypsum-Treated Agricultural Soils(2020-12) Cox, Kristiana; Jacinthe, Pierre-Andre; Wang, Lixin; Gilhooly, William P., IIIPhosphorus is an essential plant nutrient and an important contributor to the eutrophication of aquatic ecosystems. Studies have shown that gypsum (CaSO4∙H2O) applications can potentially reduce phosphorus export from agricultural fields. Most studies have examined the effect of gypsum application rates on treatment effectiveness, but limited research has been conducted to determine how the timing of gypsum application can affect soil phosphorus mobility and phosphorus leaching. A greenhouse experiment was conducted to address this question and further our understanding of the effect of gypsum addition on soil phosphorus chemistry. For the experiment, two soil types with different background phosphorus levels (low P, high P), and three different time intervals between gypsum and phosphorus fertilizer application (2, 28 and 56 days) were applied. A total of 18 soil columns (L: 15 cm; diam: 10 cm) packed with sieved soil were treated with gypsum (3.9 g) and separated into three sets corresponding to each of the phosphorus application times. An equal number of columns not treated with gypsum were also included to serve as controls. Phosphorus fertilizer (0.34 mg P cm-1) was added as KH2PO4 solution. Rainwater (58 mL) was applied every 2-4 days to generate leachate that was collected and analyzed for ortho-P, total P, and SO4-2. At the end of each time series, the set of soil columns were sliced into 2-4 cm increments, and water extractable and bicarbonate extractable phosphorus (Olsen-P) was determined to examine downward phosphorus movement. Results of the study showed that Olsen-P levels were not affected by the gypsum treatment, indicating no interference of gypsum treatment with the P-supplying capacity of soils. The gypsum treatment reduced water-extractable P levels in the high-P soil, but treatment effect was not significant in the low-P soil. Likewise, in the high-P soil, gypsum treatment resulted in leachate ortho-P reduction during the second and third period of collection. For the low-P soil, there was no significant reduction in ortho-P. Overall, these results indicated that the beneficial effect of gypsum on phosphorus export from agricultural fields is dependent on soil-P status and time interval between gypsum amendment and P fertilizer application.Item EFFECT OF SOIL TYPE AND HYDROLOGY ON THE COMPOSITION OF NITROGEN GASES EMITTED FROM RIPARIAN BUFFERS(Office of the Vice Chancellor for Research, 2012-04-13) Bebinger, Lori; Jacinthe, Pierre-AndreThe US Corn Belt States are the leading contributors to nitrate (NO3-) enrichment and the so-called dead-zone in the Gulf of Mexico. Located at the interface between agricultural fields and surface water bodies, riparian buffers have shown great capacity to remove NO3- from agricultural runoff, and thus reduce fertilizer N export to streams. Under the right conditions (organic carbon, moist to wet soils), riparian soil microbes can convert NO3- into nitrous oxide (N2O) and dinitrogen (N2).However, from an air quality standpoint, a low N2O production relative to N2 (mole fraction of N2O) would be preferred because N2O contributes to the greenhouse effect and depletion of the ozone layer, With the hypothesis that frequent water saturation is favorable to the reduction of N2O into N2 (thus a low N2O mole fraction), a study was conducted to identify controlling factors of N2O mole fraction across various riparian buffers, including well-drained (WR), artificially-drained (LWD), and poorly-drained (SF) sites. The relative production of N2O and N2 was measured in the laboratory using the acetylene (C2H2) block technique. In the absence of C2H2, there was no difference in N2O production rate among the sites. However, in the presence of C2H2, N2O production at SF (30 μg N2O kg-1 soil h-1) was much higher than at the other sites (3.31 at LWD and 8.42 at WR). Conversely, the N2O mole fraction at SF (0.11) was lower than at WR (0.28). These results are consistent with the greater soil moisture, and higher total soil organic C at SF compared to the other sites. The low N2O production at LWD is probably due to the presence of tile drains and infrequent soil saturation. Future studies will examine the impact of tile-drain on the composition of N gases from these types of buffers.Item Effect of Stakeholder Attitudes on the Optimization of Watershed Conservation Practices(2013-01-30) Piemonti, Adriana Debora; Babbar-Sebens, Meghna; Jacinthe, Pierre-Andre; Mukhopadhyay, Snehasis; Luzar, E. Jane, 1951-Land use alterations have been major drivers for modifying hydrologic cycles in many watersheds nationwide. Imbalances in this cycle have led to unexpected or extreme changes in flood and drought patterns and intensities, severe impairment of rivers and streams due to pollutants, and extensive economic losses to affected communities. Eagle Creek Watershed (ECW) is a typical Midwestern agricultural watershed with a growing urban land-use that has been affected by these problems. Structural solutions, such as ditches and tiles, have helped in the past to reduce the flooding problem in the upland agricultural area. But these structures have led to extensive flooding and water quality problems downstream and loss of moisture storage in the soil upstream. It has been suggested that re-naturalization of watershed hydrology via a spatially-distributed implementation of non-structural and structural conservation practices, such as cover crops, wetlands, riparian buffers, grassed waterways, etc. will help to reduce these problems by improving the upland runoff (storing water temporally as moisture in the soil or in depression storages). However, spatial implementation of these upland storage practices poses hurdles not only due to the large number of possible alternatives offered by physical models, but also by the effect of tenure, social attitudes, and behaviors of landowners that could further add complexities on whether and how these practices are adopted and effectively implemented for benefits. This study investigates (a) how landowner tenure and attitudes can be used to identify promising conservation practices in an agricultural watershed, (b) how the different attitudes and preferences of stakeholders can modify the effectiveness of solutions obtained via classic optimization approaches that do not include the influence of social attitudes in a watershed, and (c) how spatial distribution of landowner tenure affects the spatial optimization of conservation practices on a watershed scale. Results showed two main preferred practices, one for an economic evaluation (filter strips) and one for an environmental perspective (wetlands). A land tenure comparison showed differences in spatial distribution of systems considering all the conservation practices. It also was observed that cash renters selected practices will provide a better cost-revenue relation than the selected optimal solution.Item Global divergent trends of algal blooms detected by satellite during 1982–2018(Wiley, 2022-04) Fang, Chong; Song, Kaishan; Paerl, Hans W.; Jacinthe, Pierre-Andre; Wen, Zhidan; Liu, Ge; Tao, Hui; Xu, Xiaofeng; Kutser, Tiit; Wang, Zongming; Duan, Hongtao; Shi, Kun; Shang, Yingxin; Lyu, Lili; Li, Sijia; Yang, Qian; Lyu, Dongmei; Mao, Dehua; Zhang, Baohua; Cheng, Shuai; Lyu, Yunfeng; Earth and Environmental Sciences, School of ScienceAlgal blooms (ABs) in inland lakes have caused adverse ecological effects, and health impairment of animals and humans. We used archived Landsat images to examine ABs in lakes (>1 km2) around the globe over a 37-year time span (1982–2018). Out of the 176032 lakes with area >1 km2 detected globally, 863 were impacted by ABs, 708 had sufficiently long records to define a trend, and 66% exhibited increasing trends in frequency ratio (FRQR, ratio of the number of ABs events observed in a year in a given lake to the number of available Landsat images for that lake) or area ratio (AR, ratio of annual maximum area covered by ABs observed in a lake to the surface area of that lake), while 34% showed a decreasing trend. Across North America, an intensification of ABs severity was observed for FRQR (p < .01) and AR (p < .01) before 1999, followed by a decrease in ABs FRQR (p < .01) and AR (p < .05) after the 2000s. The strongest intensification of ABs was observed in Asia, followed by South America, Africa, and Europe. No clear trend was detected for the Oceania. Across climatic zones, the contributions of anthropogenic factors to ABs intensification (16.5% for fertilizer, 19.4% for gross domestic product, and 18.7% for population) were slightly stronger than climatic drivers (10.1% for temperature, 11.7% for wind speed, 16.8% for pressure, and for 11.6% for rainfall). Collectively, these divergent trends indicate that consideration of anthropogenic factors as well as climate change should be at the forefront of management policies aimed at reducing the severity and frequency of ABs in inland waters.
- «
- 1 (current)
- 2
- 3
- »