- Browse by Author
Browsing by Author "Its, Alexander"
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item Asymptotic Analysis of Structured Determinants via the Riemann-Hilbert Approach(2019-08) Gharakhloo, Roozbeh; Its, Alexander; Bleher, Pavel; Yattselev, Maxim; Eremenko, AlexandreIn this work we use and develop Riemann-Hilbert techniques to study the asymptotic behavior of structured determinants. In chapter one we will review the main underlying definitions and ideas which will be extensively used throughout the thesis. Chapter two is devoted to the asymptotic analysis of Hankel determinants with Laguerre-type and Jacobi-type potentials with Fisher-Hartwig singularities. In chapter three we will propose a Riemann-Hilbert problem for Toeplitz+Hankel determinants. We will then analyze this Riemann-Hilbert problem for a certain family of Toeplitz and Hankel symbols. In Chapter four we will study the asymptotics of a certain bordered-Toeplitz determinant which is related to the next-to-diagonal correlations of the anisotropic Ising model. The analysis is based upon relating the bordered-Toeplitz determinant to the solution of the Riemann-Hilbert problem associated to pure Toeplitz determinants. Finally in chapter ve we will study the emptiness formation probability in the XXZ-spin 1/2 Heisenberg chain, or equivalently, the asymptotic analysis of the associated Fredholm determinant.Item The asymptotic behaviour of the discrete holomorphic map Za via the Riemann-Hilbert method(Duke, 2016) Bobenko, Alexander I.; Its, Alexander; Department of Mathematical Sciences, School of ScienceWe study the asymptotic behavior of the discrete analogue of the holomorphic map zaza. The analysis is based on the use of the Riemann–Hilbert approach. Specifically, using the Deift–Zhou nonlinear steepest descent method we prove the asymptotic formulas which were conjectured in 2000.Item Asymptotics of bordered Toeplitz determinants and next-to-diagonal Ising correlations(arXiv, 2021) Basor, Estelle; Ehrhardt, Torsten; Gharakhloo, Roozbeh; Its, Alexander; Li, Yuqi; Mathematical Sciences, School of ScienceWe prove the analogue of the strong Szeg{\H o} limit theorem for a large class of bordered Toeplitz determinants. In particular, by applying our results to the formula of Au-Yang and Perk \cite{YP} for the next-to-diagonal correlations ⟨σ0,0σN−1,N⟩ in the anisotropic square lattice Ising model, we rigorously justify that the next-to-diagonal long-range order is the same as the diagonal and horizontal ones in the low temperature regime. The anisotropy-dependence of the subleading term in the asymptotics of the next-to-diagonal correlations is also established. We use Riemann-Hilbert and operator theory techniques, independently and in parallel, to prove these results.Item Certain Aspects of Quantum and Classical Integrable Systems(2022-08) Kosmakov, Maksim; Tarasov, Vitaly; Its, Alexander; Mukhin, Evgeny; Ramras, DanielWe derive new combinatorail formulas for vector-valued weight functions for the evolution modules over the Yangians Y (gl_n). We obtain them using the Nested Algebraic Bethe ansatz method. We also describe the asymptotic behavior of the radial solutions of the negative tt* equation via the Riemann-Hilbert problem and the Deift-Zhou nonlinear steepest descent method.Item Connection Problem for Painlevé Tau Functions(2019-08) Prokhorov, Andrei; Its, Alexander; Bleher, Pavel; Eremenko, Alexandre; Tarasov, VitalyWe derive the differential identities for isomonodromic tau functions, describing their monodromy dependence. For Painlev´e equations we obtain them from the relation of tau function to classical action which is a consequence of quasihomogeneity of corresponding Hamiltonians. We use these identities to solve the connection problem for generic solution of Painlev´e-III(D8) equation, and homogeneous Painlev´e-II equation. We formulate conjectures on Hamiltonian and symplectic structure of general isomonodromic deformations we obtained during our studies and check them for Painlev´e equations.Item Connection problem for the sine-Gordon/Painlev e III tau function and irregular conformal blocks(Oxford, 2015) Its, Alexander; Lisovyy, Oleg; Tykhyy, Yuriy; Department of Mathematical Sciences, School of ScienceThe short-distance expansion of the tau function of the radial sine-Gordon/Painlevé III equation is given by a convergent series which involves irregular c=1c=1 conformal blocks and possesses certain periodicity properties with respect to monodromy data. The long-distance irregular expansion exhibits a similar periodicity with respect to a different pair of coordinates on the monodromy manifold. This observation is used to conjecture an exact expression for the connection constant providing relative normalization of the two series. Up to an elementary prefactor, it is given by the generating function of the canonical transformation between the two sets of coordinates.Item Duality of Gaudin models(2020-08) Uvarov, Filipp; Tarasov, Vitaly; Mukhin, Evgeny; Its, Alexander; Ramras, DanielWe consider actions of the current Lie algebras $\gl_{n}[t]$ and $\gl_{k}[t]$ on the space $\mathfrak{P}_{kn}$ of polynomials in $kn$ anticommuting variables. The actions depend on parameters $\bar{z}=(z_{1},\dots ,z_{k})$ and $\bar{\alpha}=(\alpha_{1},\dots ,\alpha_{n})$, respectively. We show that the images of the Bethe algebras $\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}\subset U(\gl_{n}[t])$ and $\mathcal{B}_{\bar{z}}^{\langle k \rangle}\subset U(\gl_{k}[t])$ under these actions coincide. To prove the statement, we use the Bethe ansatz description of eigenvectors of the Bethe algebras via spaces of quasi-exponentials. We establish an explicit correspondence between the spaces of quasi-exponentials describing eigenvectors of $\mathcal{B}_{\bar{\alpha}}^{\langle n \rangle}$ and the spaces of quasi-exponentials describing eigenvectors of $\mathcal{B}_{\bar{z}}^{\langle k \rangle}$. One particular aspect of the duality of the Bethe algebras is that the Gaudin Hamiltonians exchange with the Dynamical Hamiltonians. We study a similar relation between the trigonometric Gaudin and Dynamical Hamiltonians. In trigonometric Gaudin model, spaces of quasi-exponentials are replaced by spaces of quasi-polynomials. We establish an explicit correspondence between the spaces of quasi-polynomials describing eigenvectors of the trigonometric Gaudin Hamiltonians and the spaces of quasi-exponentials describing eigenvectors of the trigonometric Dynamical Hamiltonians. We also establish the $(\gl_{k},\gl_{n})$-duality for the rational, trigonometric and difference versions of Knizhnik-Zamolodchikov and Dynamical equations.Item Gaudin models associated to classical Lie algebras(2020-08) Lu, Kang; Mukhin, Evgeny; Its, Alexander; Roeder, Roland; Tarasov, VitalyWe study the Gaudin model associated to Lie algebras of classical types. First, we derive explicit formulas for solutions of the Bethe ansatz equations of the Gaudin model associated to the tensor product of one arbitrary finite-dimensional irreducible module and one vector representation for all simple Lie algebras of classical type. We use this result to show that the Bethe Ansatz is complete in any tensor product where all but one factor are vector representations and the evaluation parameters are generic. We also show that except for the type D, the joint spectrum of Gaudin Hamiltonians in such tensor products is simple. Second, we define a new stratification of the Grassmannian of N planes. We introduce a new subvariety of Grassmannian, called self-dual Grassmannian, using the connections between self-dual spaces and Gaudin model associated to Lie algebras of types B and C. Then we obtain a stratification of self-dual Grassmannian.Item On the analysis of incomplete spectra in random matrix theory through an extension of the Jimbo–Miwa–Ueno differential(Elsevier, 2019-03) Bothner, Thomas; Its, Alexander; Prokhorov, Andrei; Mathematical Sciences, School of ScienceSeveral distribution functions in the classical unitarily invariant matrix ensembles are prime examples of isomonodromic tau functions as introduced by Jimbo, Miwa and Ueno (JMU) in the early 1980s [45]. Recent advances in the theory of tau functions [41], based on earlier works of B. Malgrange and M. Bertola, have allowed to extend the original Jimbo–Miwa–Ueno differential form to a 1-form closed on the full space of extended monodromy data of the underlying Lax pairs. This in turn has yielded a novel approach for the asymptotic evaluation of isomonodromic tau functions, including the exact computation of all relevant constant factors. We use this method to efficiently compute the tail asymptotics of soft-edge, hard-edge and bulk scaled distribution and gap functions in the complex Wishart ensemble, provided each eigenvalue particle has been removed independently with probability 1-γ ∈ (0, 1⌋.Item On the Tracy-Widomββ Distribution for β=6(2016) Grava, Tamara; Its, Alexander; Kapaev, Andrei; Mezzadri, Francesco; Department of Mathematical Sciences, School of ScienceWe study the Tracy-Widom distribution function for Dyson's ββ-ensemble with β=6β=6. The starting point of our analysis is the recent work of I. Rumanov where he produces a Lax-pair representation for the Bloemendal-Virág equation. The latter is a linear PDE which describes the Tracy-Widom functions corresponding to general values of ββ. Using his Lax pair, Rumanov derives an explicit formula for the Tracy-Widom β=6β=6 function in terms of the second Painlevé transcendent and the solution of an auxiliary ODE. Rumanov also shows that this formula allows him to derive formally the asymptotic expansion of the Tracy-Widom function. Our goal is to make Rumanov's approach and hence the asymptotic analysis it provides rigorous. In this paper, the first one in a sequel, we show that Rumanov's Lax-pair can be interpreted as a certain gauge transformation of the standard Lax pair for the second Painlevé equation. This gauge transformation though contains functional parameters which are defined via some auxiliary nonlinear ODE which is equivalent to the auxiliary ODE of Rumanov's formula. The gauge-interpretation of Rumanov's Lax-pair allows us to highlight the steps of the original Rumanov's method which needs rigorous justifications in order to make the method complete. We provide a rigorous justification of one of these steps. Namely, we prove that the Painlevé function involved in Rumanov's formula is indeed, as it has been suggested by Rumanov, the Hastings-McLeod solution of the second Painlevé equation. The key issue which we also discuss and which is still open is the question of integrability of the auxiliary ODE in Rumanov's formula. We note that this question is crucial for the rigorous asymptotic analysis of the Tracy-Widom function. We also notice that our work is a partial answer to one of the problems related to the ββ-ensembles formulated by Percy Deift during the June 2015 Montreal Conference on integrable systems.