- Browse by Author
Browsing by Author "Ismail-Beigi, Faramarz"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Association of Glycemia with Insulin Sensitivity and β-cell Function in Adults with Early Type 2 Diabetes on Metformin Alone(Elsevier, 2021) Utzschneider, Kristina M.; Younes, Naji; Rasouli, Neda; Barzilay, Joshua; Banerji, Mary Ann; Cohen, Robert M.; Gonzalez, Erica V.; Mather, Kieren J.; Ismail-Beigi, Faramarz; Raskin, Philip; Wexler, Deborah J.; Lachin, John M.; Kahn, Steven E.; GRADE Research Group; Medicine, School of MedicineAims: Evaluate the relationship between measures of glycemia with β-cell function and insulin sensitivity in adults with early type 2 diabetes mellitus (T2DM). Methods: This cross-sectional analysis evaluated baseline data from 3108 adults with T2DM <10 years treated with metformin alone enrolled in the Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness (GRADE) Study. Insulin and C-peptide responses and insulin sensitivity were calculated from 2-hour oral glucose tolerance tests. Regression models evaluated the relationships between glycemic measures (HbA1c, fasting and 2-hour glucose), measures of β-cell function and insulin sensitivity. Results: Insulin and C-peptide responses were inversely associated with insulin sensitivity. Glycemic measures were inversely associated with insulin and C-peptide responses adjusted for insulin sensitivity. HbA1c demonstrated modest associations with β-cell function (range: r −0.22 to −0.35). Fasting and 2-hour glucose were associated with early insulin and C-peptide responses (range: r −0.37 to −0.40) as well as late insulin and total insulin and C-peptide responses (range: r −0.50 to −0.60). Conclusion: Glycemia is strongly associated with β-cell dysfunction in adults with early T2DM treated with metformin alone. Efforts to improve glycemia should focus on interventions aimed at improving β-cell function.Item Connecting Rodent and Human Pharmacokinetic Models for the Design and Translation of Glucose-Responsive Insulin(American Diabetes Association, 2020-08) Yang, Jing Fan; Gong, Xun; Bakh, Naveed A.; Carr, Kelley; Phillips, Nelson F.B.; Ismail-Beigi, Faramarz; Weiss, Michael A.; Strano, Michael S.; Biochemistry and Molecular Biology, School of MedicineDespite considerable progress, development of glucose-responsive insulins (GRIs) still largely depends on empirical knowledge and tedious experimentation-especially on rodents. To assist the rational design and clinical translation of the therapeutic, we present a Pharmacokinetic Algorithm Mapping GRI Efficacies in Rodents and Humans (PAMERAH) built upon our previous human model. PAMERAH constitutes a framework for predicting the therapeutic efficacy of a GRI candidate from its user-specified mechanism of action, kinetics, and dosage, which we show is accurate when checked against data from experiments and literature. Results from simulated glucose clamps also agree quantitatively with recent GRI publications. We demonstrate that the model can be used to explore the vast number of permutations constituting the GRI parameter space and thereby identify the optimal design ranges that yield desired performance. A design guide aside, PAMERAH more importantly can facilitate GRI's clinical translation by connecting each candidate's efficacies in rats, mice, and humans. The resultant mapping helps to find GRIs that appear promising in rodents but underperform in humans (i.e., false positives). Conversely, it also allows for the discovery of optimal human GRI dynamics not captured by experiments on a rodent population (false negatives). We condense such information onto a "translatability grid" as a straightforward, visual guide for GRI development.Item Evolution of insulin at the edge of foldability and its medical implications(National Academy of Sciences, 2020-11-24) Rege, Nischay K.; Liu, Ming; Yang, Yanwu; Dhayalan, Balamurugan; Wickramasinghe, Nalinda P.; Chen, Yen-Shan; Rahimi, Leili; Guo, Huan; Haataja, Leena; Sun, Jinhong; Ismail-Beigi, Faramarz; Phillips, Nelson B.; Arvan, Peter; Weiss, Michael A.; Biochemistry and Molecular Biology, School of MedicineProteins have evolved to be foldable, and yet determinants of foldability may be inapparent once the native state is reached. Insight has emerged from studies of diseases of protein misfolding, exemplified by monogenic diabetes mellitus due to mutations in proinsulin leading to endoplasmic reticulum stress and β-cell death. Cellular foldability of human proinsulin requires an invariant Phe within a conserved crevice at the receptor-binding surface (position B24). Any substitution, even related aromatic residue TyrB24, impairs insulin biosynthesis and secretion. As a seeming paradox, a monomeric TyrB24 insulin analog exhibits a native-like structure in solution with only a modest decrement in stability. Packing of TyrB24 is similar to that of PheB24, adjoining core cystine B19-A20 to seal the core; the analog also exhibits native self-assembly. Although affinity for the insulin receptor is decreased ∼20-fold, biological activities in cells and rats were within the range of natural variation. Together, our findings suggest that the invariance of PheB24 among vertebrate insulins and insulin-like growth factors reflects an essential role in enabling efficient protein folding, trafficking, and secretion, a function that is inapparent in native structures. In particular, we envision that the para-hydroxyl group of TyrB24 hinders pairing of cystine B19-A20 in an obligatory on-pathway folding intermediate. The absence of genetic variation at B24 and other conserved sites near this disulfide bridge-excluded due to β-cell dysfunction-suggests that insulin has evolved to the edge of foldability. Nonrobustness of a protein's fitness landscape underlies both a rare monogenic syndrome and "diabesity" as a pandemic disease of civilization.Item Peptide Model of the Mutant Proinsulin Syndrome. I. Design and Clinical Correlation(Frontiers Media, 2022-03-01) Dhayalan, Balamurugan; Glidden, Michael D.; Zaykov, Alexander N.; Chen, Yen-Shan; Yang, Yanwu; Phillips, Nelson B.; Ismail-Beigi, Faramarz; Jarosinski, Mark A.; DiMarchi, Richard D.; Weiss, Michael A.; Biochemistry and Molecular Biology, School of MedicineThe mutant proinsulin syndrome is a monogenic cause of diabetes mellitus due to toxic misfolding of insulin's biosynthetic precursor. Also designated mutant INS-gene induced diabetes of the young (MIDY), this syndrome defines molecular determinants of foldability in the endoplasmic reticulum (ER) of β-cells. Here, we describe a peptide model of a key proinsulin folding intermediate and variants containing representative clinical mutations; the latter perturb invariant core sites in native proinsulin (LeuB15→Pro, LeuA16→Pro, and PheB24→Ser). The studies exploited a 49-residue single-chain synthetic precursor (designated DesDi), previously shown to optimize in vitro efficiency of disulfide pairing. Parent and variant peptides contain a single disulfide bridge (cystine B19-A20) to provide a model of proinsulin's first oxidative folding intermediate. The peptides were characterized by circular dichroism and redox stability in relation to effects of the mutations on (a) in vitro foldability of the corresponding insulin analogs and (b) ER stress induced in cell culture on expression of the corresponding variant proinsulins. Striking correlations were observed between peptide biophysical properties, degree of ER stress and age of diabetes onset (neonatal or adolescent). Our findings suggest that age of onset reflects the extent to which nascent structure is destabilized in proinsulin's putative folding nucleus. We envisage that such peptide models will enable high-resolution structural studies of key folding determinants and in turn permit molecular dissection of phenotype-genotype relationships in this monogenic diabetes syndrome. Our companion study (next article in this issue) employs two-dimensional heteronuclear NMR spectroscopy to define site-specific perturbations in the variant peptides.Item Reassessment of an Innovative Insulin Analogue Excludes Protracted Action yet Highlights Distinction between External and Internal Diselenide Bridges(Wiley, 2020-04-09) Dhayalan, Balamurugan; Chen, Yen-Shan; Phillips, Nelson B.; Swain, Mamuni; Rege, Nischay; Mirsalehi, Ali; Jarosinski, Mark; Ismail-Beigi, Faramarz; Metanis, Norman; Weiss, Michael A.; Biochemistry and Molecular Biology, School of MedicineLong-acting insulin analogues represent the most prescribed class of therapeutic proteins. An innovative design strategy was recently proposed: diselenide substitution of an external disulfide bridge. This approach exploited the distinctive physicochemical properties of selenocysteine (U). Relative to wild type (WT), Se-insulin[C7UA , C7UB ] was reported to be protected from proteolysis by insulin-degrading enzyme (IDE), predicting prolonged activity. Because of this strategy's novelty and potential clinical importance, we sought to validate these findings and test their therapeutic utility in an animal model of diabetes mellitus. Surprisingly, the analogue did not exhibit enhanced stability, and its susceptibility to cleavage by either IDE or a canonical serine protease (glutamyl endopeptidase Glu-C) was similar to WT. Moreover, the analogue's pharmacodynamic profile in rats was not prolonged relative to a rapid-acting clinical analogue (insulin lispro). Although [C7UA , C7UB ] does not confer protracted action, nonetheless its comparison to internal diselenide bridges promises to provide broad biophysical insight.Item “Register-shift” insulin analogs uncover constraints of proteotoxicity in protein evolution(Elsevier, 2020-03-06) Rege, Nischay K.; Liu, Ming; Dhayalan, Balamurugan; Chen, Yen-Shan; Smith, Nicholas A.; Rahimi, Leili; Sun, Jinhong; Guo, Huan; Yang, Yanwu; Haataja, Leena; Phillips, Nelson F. B.; Whittaker, Jonathan; Smith, Brian J.; Arvan, Peter; Ismail-Beigi, Faramarz; Weiss, Michael A.; Biochemistry and Molecular Biology, School of MedicineGlobular protein sequences encode not only functional structures (the native state) but also protein foldability, i.e. a conformational search that is both efficient and robustly minimizes misfolding. Studies of mutations associated with toxic misfolding have yielded insights into molecular determinants of protein foldability. Of particular interest are residues that are conserved yet dispensable in the native state. Here, we exploited the mutant proinsulin syndrome (a major cause of permanent neonatal-onset diabetes mellitus) to investigate whether toxic misfolding poses an evolutionary constraint. Our experiments focused on an invariant aromatic motif (PheB24-PheB25-TyrB26) with complementary roles in native self-assembly and receptor binding. A novel class of mutations provided evidence that insulin can bind to the insulin receptor (IR) in two different modes, distinguished by a "register shift" in this motif, as visualized by molecular dynamics (MD) simulations. Register-shift variants are active but defective in cellular foldability and exquisitely susceptible to fibrillation in vitro Indeed, expression of the corresponding proinsulin variant induced endoplasmic reticulum stress, a general feature of the mutant proinsulin syndrome. Although not present among vertebrate insulin and insulin-like sequences, a prototypical variant ([GlyB24]insulin) was as potent as WT insulin in a rat model of diabetes. Although in MD simulations the shifted register of receptor engagement is compatible with the structure and allosteric reorganization of the IR-signaling complex, our results suggest that this binding mode is associated with toxic misfolding and so is disallowed in evolution. The implicit threat of proteotoxicity limits sequence variation among vertebrate insulins and insulin-like growth factors.Item Shape of the OGTT glucose response curve: relationship with β-cell function and differences by sex, race, and BMI in adults with early type 2 diabetes treated with metformin(BMJ, 2021) Utzschneider, Kristina M.; Younes, Naji; Rasouli, Neda; Barzilay, Joshua I.; Banerji, Mary Ann; Cohen, Robert M.; Gonzalez, Erica V.; Ismail-Beigi, Faramarz; Mather, Kieren J.; Raskin, Philip; Wexler, Deborah J.; Lachin, John M.; Kahn, Steven E.; GRADE Research Group; Medicine, School of MedicineIntroduction: The shape of the glucose curve during an oral glucose tolerance test (OGTT) reflects β-cell function in populations without diabetes but has not been as well studied in those with diabetes. A monophasic shape has been associated with higher risk of diabetes, while a biphasic pattern has been associated with lower risk. We sought to determine if phenotypic or metabolic characteristics were associated with glucose response curve shape in adults with type 2 diabetes treated with metformin alone. Research design and methods: This is a cross-sectional analysis of 3108 metformin-treated adults with type 2 diabetes diagnosed <10 years who underwent 2-hour 75 g OGTT at baseline as part of the Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness Study (GRADE). Insulin sensitivity (homeostasis model of insulin sensitivity, HOMA2-S) and β-cell function (early, late, and total incremental insulin and C peptide responses adjusted for HOMA2-S) were calculated. Glucose curve shape was classified as monophasic, biphasic, or continuous rise. Results: The monophasic profile was the most common (67.8% monophasic, 5.5% biphasic, 26.7% continuous rise). The monophasic subgroup was younger, more likely male and white, and had higher body mass index (BMI), while the continuous rise subgroup was more likely female and African American/black. HOMA2-S and fasting glucose did not differ among the subgroups. The biphasic subgroup had the highest early, late, and total insulin and C peptide responses (all p<0.05 vs monophasic and continuous rise). Compared with the monophasic subgroup, the continuous rise subgroup had similar early insulin (p=0.3) and C peptide (p=0.6) responses but lower late insulin (p<0.001) and total insulin (p=0.008) and C peptide (p<0.001) responses. Conclusions: Based on the large multiethnic GRADE cohort, sex, race, age, and BMI were found to be important determinants of the shape of the glucose response curve. A pattern of a continuously rising glucose at 2 hours reflected reduced β-cell function and may portend increased glycemic failure rates.Item Solution structure of an ultra-stable single-chain insulin analog connects protein dynamics to a novel mechanism of receptor binding(American Society for Biochemistry and Molecular Biology, 2018-01-05) Glidden, Michael D.; Yang, Yanwu; Smith, Nicholas A.; Phillips, Nelson B.; Carr, Kelley; Wickramasinghe, Nalinda P.; Ismail-Beigi, Faramarz; Lawrence, Michael C.; Smith, Brian J.; Weiss, Michael A.; Biochemistry and Molecular Biology, School of MedicineDomain-minimized insulin receptors (IRs) have enabled crystallographic analysis of insulin-bound "micro-receptors." In such structures, the C-terminal segment of the insulin B chain inserts between conserved IR domains, unmasking an invariant receptor-binding surface that spans both insulin A and B chains. This "open" conformation not only rationalizes the inactivity of single-chain insulin (SCI) analogs (in which the A and B chains are directly linked), but also suggests that connecting (C) domains of sufficient length will bind the IR. Here, we report the high-resolution solution structure and dynamics of such an active SCI. The hormone's closed-to-open transition is foreshadowed by segmental flexibility in the native state as probed by heteronuclear NMR spectroscopy and multiple conformer simulations of crystallographic protomers as described in the companion article. We propose a model of the SCI's IR-bound state based on molecular-dynamics simulations of a micro-receptor complex. In this model, a loop defined by the SCI's B and C domains encircles the C-terminal segment of the IR α-subunit. This binding mode predicts a conformational transition between an ultra-stable closed state (in the free hormone) and an active open state (on receptor binding). Optimization of this switch within an ultra-stable SCI promises to circumvent insulin's complex global cold chain. The analog's biphasic activity, which serendipitously resembles current premixed formulations of soluble insulin and microcrystalline suspension, may be of particular utility in the developing world.Item Structure-based stabilization of insulin as a therapeutic protein assembly via enhanced aromatic-aromatic interactions(American Society for Biochemistry and Molecular Biology, 2018-07-13) Rege, Nischay K.; Wickramasinghe, Nalinda P.; Tustan, Alisar N.; Phillips, Nelson F. B.; Yee, Vivien C.; Ismail-Beigi, Faramarz; Weiss, Michael A.; Biochemistry & Molecular Biology, IU School of MedicineKey contributions to protein structure and stability are provided by weakly polar interactions, which arise from asymmetric electronic distributions within amino acids and peptide bonds. Of particular interest are aromatic side chains whose directional π-systems commonly stabilize protein interiors and interfaces. Here, we consider aromatic-aromatic interactions within a model protein assembly: the dimer interface of insulin. Semi-classical simulations of aromatic-aromatic interactions at this interface suggested that substitution of residue TyrB26 by Trp would preserve native structure while enhancing dimerization (and hence hexamer stability). The crystal structure of a [TrpB26]insulin analog (determined as a T3Rf3 zinc hexamer at a resolution of 2.25 Å) was observed to be essentially identical to that of WT insulin. Remarkably and yet in general accordance with theoretical expectations, spectroscopic studies demonstrated a 150-fold increase in the in vitro lifetime of the variant hexamer, a critical pharmacokinetic parameter influencing design of long-acting formulations. Functional studies in diabetic rats indeed revealed prolonged action following subcutaneous injection. The potency of the TrpB26-modified analog was equal to or greater than an unmodified control. Thus, exploiting a general quantum-chemical feature of protein structure and stability, our results exemplify a mechanism-based approach to the optimization of a therapeutic protein assembly.Item An ultra-stable single-chain insulin analog resists thermal inactivation and exhibits biological signaling duration equivalent to the native protein(American Society for Biochemistry and Molecular Biology, 2018-01-05) Glidden, Michael D.; Aldabbagh, Khadijah; Phillips, Nelson B.; Carr, Kelley; Chen, Yen-Shan; Whittaker, Jonathan; Phillips, Manijeh; Wickramasinghe, Nalinda P.; Rege, Nischay; Swain, Mamuni; Peng, Yi; Yang, Yanwu; Lawrence, Michael C.; Yee, Vivien C.; Ismail-Beigi, Faramarz; Weiss, Michael A.; Biochemistry and Molecular Biology, School of MedicineThermal degradation of insulin complicates its delivery and use. Previous efforts to engineer ultra-stable analogs were confounded by prolonged cellular signaling in vivo, of unclear safety and complicating mealtime therapy. We therefore sought an ultra-stable analog whose potency and duration of action on intravenous bolus injection in diabetic rats are indistinguishable from wild-type (WT) insulin. Here, we describe the structure, function, and stability of such an analog, a 57-residue single-chain insulin (SCI) with multiple acidic substitutions. Cell-based studies revealed native-like signaling properties with negligible mitogenic activity. Its crystal structure, determined as a novel zinc-free hexamer at 2.8 Å, revealed a native insulin fold with incomplete or absent electron density in the C domain; complementary NMR studies are described in the accompanying article. The stability of the analog (ΔGU 5.0(±0.1) kcal/mol at 25 °C) was greater than that of WT insulin (3.3(±0.1) kcal/mol). On gentle agitation, the SCI retained full activity for >140 days at 45 °C and >48 h at 75 °C. These findings indicate that marked resistance to thermal inactivation in vitro is compatible with native duration of activity in vivo Further, whereas WT insulin forms large and heterogeneous aggregates above the standard 0.6 mm pharmaceutical strength, perturbing the pharmacokinetic properties of concentrated formulations, dynamic light scattering, and size-exclusion chromatography revealed only limited SCI self-assembly and aggregation in the concentration range 1-7 mm Such a combination of favorable biophysical and biological properties suggests that SCIs could provide a global therapeutic platform without a cold chain.