- Browse by Author
Browsing by Author "Isenberg, Jason S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The Platelet-activating Factor Receptor Protects Epidermal Cells from Tumor Necrosis Factor (TNF) α and TNF-related Apoptosis-inducing Ligand-induced Apoptosis through an NF-κB-dependent Process(American Society for Biochemistry and Molecular Biology, 2001-12-07) Southall, Michael D.; Isenberg, Jason S.; Nakshatri, Harikrishna; Yi, Qiaofang; Pei, Yong; Spandau, Dan F.; Travers, Jeffrey B.A number of chemical mediators can induce human keratinocytes and epidermal-derived carcinomas to undergo apoptosis, or programmed cell death. Recent evidence suggests pro-inflammatory cytokines, such as interleukin-1β or transforming growth factor α, protects carcinomas from numerous pro-apoptotic stimuli. Platelet-activating factor (1-alkyl-2-acetyl-3-glycerophosphocholine; PAF) is a lipid mediator with pro-inflammatory effects on numerous cell types. Although PAF can be metabolized to other bioactive lipids, the majority of PAF effects occur through activation of a G protein-coupled receptor. Using a model system created by retroviral transduction of the PAF receptor (PAF-R) into the PAF-R-negative human epidermal cell line KB and the PAF-R-expressing keratinocyte cell line HaCaT, we now demonstrate that activation of the epidermal PAF-R results in protection from apoptosis induced by tumor necrosis factor (TNF) α or TNF-related apoptosis-inducing ligand. The PAF-mediated protection was inhibited by PAF-R antagonists, and protection did not occur in PAF-R-negative KB cells. Additionally, we show protection from TNFα- or TRAIL-induced apoptosis by PAF-R activation is dependent on the transcription factor nuclear factor (NF)-κB, because PAF-R activation-induced NF-κB and epidermal cells transduced with a super-repressor form of inhibitor κB were not protected by the PAF-R. These studies provide a mechanism whereby the epidermal PAF-R, and possibly other G protein-coupled receptors, can exert anti-apoptotic effects through an NF-κB-dependent process.Item The Role of Oxidative Stress in Chemical Carcinogenesis(National Institute of Environmental Health Sciences, 1998-02) Klaunig, James E.; Xu, Yong; Isenberg, Jason S.; Bachowski, Stephen; Kolaja, Kyle L.; Jiang, Jiazhong; Stevenson, Donald E.; Walborg, Earl F. Jr.; Pharmacology and Toxicology, School of MedicineOxidative stress results when the balance between the production of reactive oxygen species (ROS) overrides the antioxidant capability of the target cell; oxidative damage from the interaction of reactive oxygen with critical cellular macromolecules may occur. ROS may interact with and modify cellular protein, lipid, and DNA, which results in altered target cell function. The accumulation of oxidative damage has been implicated in both acute and chronic cell injury including possible participation in the formation of cancer. Acute oxidative injury may produce selective cell death and a compensatory increase in cell proliferation. This stimulus may result in the formation of newly initiated preneoplastic cells and/or enhance the selective clonal expansion of latent initiated preneoplastic cells. Similarly, sublethal acute oxidative injury may produce unrepaired DNA damage and result in the formation of new mutations and, potentially, new initiated cells. In contrast, sustained chronic oxidative injury may lead to a nonlethal modification of normal cellular growth control mechanisms. Cellular oxidative stress can modify intercellular communication, protein kinase activity, membrane structure and function, and gene expression, and result in modulation of cell growth. We examined the role of oxidative stress as a possible mechanism by which nongenotoxic carcinogens may function. In studies with the selective mouse liver carcinogen dieldrin, a species-specific and dose-dependent decrease in liver antioxidant concentrations with a concomitant increase in ROS formation and oxidative damage was seen. This increase in oxidative stress correlated with an increase in hepatocyte DNA synthesis. Antioxidant supplementation prevented the dieldrin-induced cellular changes. Our findings suggest that the effect of nongenotoxic carcinogens (if they function through oxidative mechanisms) may be amplified in rodents but not in primates because of rodents' greater sensitivity to ROS. These results and findings reported by others support a potential role for oxidative-induced injury in the cancer process specifically during the promotion stage.