ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Irimata, Lisa E."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Effects of bisphosphonate ligands and PEGylation on targeted delivery of gold nanoparticles for contrast-enhanced radiographic detection of breast microcalcifications
    (Elsevier, 2018) Cole, Lisa E.; McGinnity, Tracie L.; Irimata, Lisa E.; Vargo-Gogola, Tracy; Roeder, Ryan K.; Biochemistry and Molecular Biology, School of Medicine
    A preclinical murine model of hydroxyapatite (HA) breast microcalcifications (µcals), which are an important clinical biomarker for breast cancer detection, was used to investigate the independent effects of high affinity bisphosphonate (BP) ligands and a polyethylene glycol (PEG) spacer on targeted delivery of gold nanoparticles (Au NPs) for contrast-enhanced radiographic detection. The addition of BP ligands to PEGylated Au NPs (BP-PEG-Au NPs) resulted in five-fold greater binding affinity for targeting HA µcals, as expected, due to the strong binding affinity of BP ligands for calcium. Therefore, BP-PEG-Au NPs were able to target HA µcals in vivo after intramammary delivery, which enabled contrast-enhanced radiographic detection of µcals in both normal and radiographically dense mammary tissues similar to previous results for BP-Au NPs, while PEG-Au NPs did not. The addition of a PEG spacer between the BP targeting ligand and Au NP surface enabled improved in vivo clearance. PEG-Au NPs and BP-PEG-Au NPs were cleared from all mammary glands (MGs) and control MGs, respectively, within 24–48 h after intramammary delivery, while BP-Au NPs were not. PEGylated Au NPs were slowly cleared from MGs by lymphatic drainage and accumulated in the spleen. Histopathology revealed uptake of PEG-Au NPs and BP-PEG-Au NPs by macrophages in the spleen, liver, and MGs; there was no evidence of toxicity due to the accumulation of NPs in organs and tissues compared with untreated controls for up to 28 days after delivery.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University