ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Imasuen-Williams, Imade E."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Combined targeting of TGF-beta, EGFR and HER2 suppresses lymphangiogenesis and metastasis in a pancreatic cancer model
    (Elsevier, 2016-08-28) Gore, Jesse; Imasuen-Williams, Imade E.; Conteh, Abass M.; Craven, Kelly E.; Cheng, Monica; Korc, Murray; Medicine, School of Medicine
    Pancreatic ductal adenocarcinomas (PDAC) are aggressive with frequent lymphatic spread. By analysis of data from The Cancer Genome Atlas, we determined that ∼35% of PDACs have a pro-angiogenic gene signature. We now show that the same PDACs exhibit increased expression of lymphangiogenic genes and lymphatic endothelial cell (LEC) markers, and that LEC abundance in human PDACs correlates with endothelial cell microvessel density. Lymphangiogenic genes and LECs are also elevated in murine PDACs arising in the KRC (mutated Kras; deleted RB) and KIC (mutated Kras; deleted INK4a) genetic models. Moreover, pancreatic cancer cells (PCCs) derived from KRC tumors express and secrete high levels of lymphangiogenic factors, including the EGF receptor ligand, amphiregulin. Importantly, TGF-β1 increases lymphangiogenic genes and amphiregulin expression in KRC PCCs but not in murine PCCs that lack SMAD4, and combinatorial targeting of the TGF-β type I receptor (TβRI) with LY2157299 and EGFR/HER2 with lapatanib suppresses tumor growth and metastasis in a syngeneic orthotopic model, and attenuates tumor lymphangiogenesis and angiogenesis while reducing lymphangiogenic genes and amphiregulin and enhancing apoptosis. Therefore, this combination could be beneficial in PDACs with lymphangiogenic or angiogenic gene signatures.
  • Loading...
    Thumbnail Image
    Item
    DMAPT inhibits NF-κB activity and increases sensitivity of prostate cancer cells to X-rays in vitro and in tumor xenografts in vivo
    (Elsevier, 2017-11) Mendonca, Marc S.; Turchan, William T.; Alpuche, Melanie E.; Watson, Christopher N.; Estabrook, Neil C.; Chin-Sinex, Helen; Shapiro, Jeremy B.; Imasuen-Williams, Imade E.; Rangel, Gabriel; Gilley, David P.; Huda, Nazmul; Crooks, Peter A.; Shapiro, Ronald H.; Department of Radiation Oncology, School of Medicine
    Constitutive activation of the pro-survival transcription factor NF-κB has been associated with resistance to both chemotherapy and radiation therapy in many human cancers, including prostate cancer. Our lab and others have demonstrated that the natural product parthenolide can inhibit NF-κB activity and sensitize PC-3 prostate cancers cells to X-rays in vitro; however, parthenolide has poor bioavailability in vivo and therefore has little clinical utility in this regard. We show here that treatment of PC-3 and DU145 human prostate cancer cells with dimethylaminoparthenolide (DMAPT), a parthenolide derivative with increased bioavailability, inhibits constitutive and radiation-induced NF-κB binding activity and slows prostate cancer cell growth. We also show that DMAPT increases single and fractionated X-ray-induced killing of prostate cancer cells through inhibition of DNA double strand break repair and also that DMAPT-induced radiosensitization is, at least partially, dependent upon the alteration of intracellular thiol reduction-oxidation chemistry. Finally, we demonstrate that the treatment of PC-3 prostate tumor xenografts with oral DMAPT in addition to radiation therapy significantly decreases tumor growth and results in significantly smaller tumor volumes compared to xenografts treated with either DMAPT or radiation therapy alone, suggesting that DMAPT might have a potential clinical role as a radiosensitizing agent in the treatment of prostate cancer.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University