- Browse by Author
Browsing by Author "Ilkayeva, Olga R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Adverse Effects of Fenofibrate in Mice Deficient in the Protein Quality Control Regulator, CHIP(MDPI, 2018-08) Ravi, Saranya; Parry, Traci L.; Willis, Monte S.; Lockyer, Pamela; Patterson, Cam; Bain, James R.; Stevens, Robert D.; Ilkayeva, Olga R.; Newgard, Christopher B.; Schisler, Jonathan C.; Pathology and Laboratory Medicine, School of MedicineWe previously reported how the loss of CHIP expression (Carboxyl terminus of Hsc70-Interacting Protein) during pressure overload resulted in robust cardiac dysfunction, which was accompanied by a failure to maintain ATP levels in the face of increased energy demand. In this study, we analyzed the cardiac metabolome after seven days of pressure overload and found an increase in long-chain and medium-chain fatty acid metabolites in wild-type hearts. This response was attenuated in mice that lack expression of CHIP (CHIP-/-). These findings suggest that CHIP may play an essential role in regulating oxidative metabolism pathways that are regulated, in part, by the nuclear receptor PPARα (Peroxisome Proliferator-Activated Receptor alpha). Next, we challenged CHIP-/- mice with the PPARα agonist called fenofibrate. We found that treating CHIP-/- mice with fenofibrate for five weeks under non-pressure overload conditions resulted in decreased skeletal muscle mass, compared to wild-type mice, and a marked increase in cardiac fibrosis accompanied by a decrease in cardiac function. Fenofibrate resulted in decreased mitochondrial cristae density in CHIP-/- hearts as well as decreased expression of genes involved in the initiation of autophagy and mitophagy, which suggests that a metabolic challenge, in the absence of CHIP expression, impacts pathways that contribute to mitochondrial quality control. In conclusion, in the absence of functional CHIP expression, fenofibrate results in unexpected skeletal muscle and cardiac pathologies. These findings are particularly relevant to patients harboring loss-of-function mutations in CHIP and are consistent with a prominent role for CHIP in regulating cardiac metabolism.Item SIRT6 Promotes Hepatic Beta-Oxidation via Activation of PPARα(Elsevier, 2019-12-17) Naiman, Shoshana; Huynh, Frank K.; Gil, Reuven; Glick, Yair; Shahar, Yael; Touitou, Noga; Nahum, Liat; Avivi, Matan Y.; Roichman, Asael; Kanfi, Yariv; Gertler, Asaf A.; Doniger, Tirza; Ilkayeva, Olga R.; Abramovich, Ifat; Yaron, Orly; Lerrer, Batia; Gottlieb, Eyal; Harris, Robert A.; Gerber, Doron; Hirschey, Matthew D.; Cohen, Haim Y.; Biochemistry and Molecular Biology, School of MedicineThe pro-longevity enzyme SIRT6 regulates various metabolic pathways. Gene expression analyses in SIRT6 heterozygotic mice identify significant decreases in PPARα signaling, known to regulate multiple metabolic pathways. SIRT6 binds PPARα and its response element within promoter regions and activates gene transcription. Sirt6+/− results in significantly reduced PPARα-induced β-oxidation and its metabolites and reduced alanine and lactate levels, while inducing pyruvate oxidation. Reciprocally, starved SIRT6 transgenic mice show increased pyruvate, acetylcarnitine, and glycerol levels and significantly induce β-oxidation genes in a PPARα-dependent manner. Furthermore, SIRT6 mediates PPARα inhibition of SREBP-dependent cholesterol and triglyceride synthesis. Mechanistically, SIRT6 binds PPARα coactivator NCOA2 and decreases liver NCOA2 K780 acetylation, which stimulates its activation of PPARα in a SIRT6-dependent manner. These coordinated SIRT6 activities lead to regulation of whole-body respiratory exchange ratio and liver fat content, revealing the interactions whereby SIRT6 synchronizes various metabolic pathways, and suggest a mechanism by which SIRT6 maintains healthy liver.