ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Igartua, Catherine"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A pan-cancer organoid platform for precision medicine
    (Elsevier, 2021) Larsen, Brian M.; Kannan, Madhavi; Langer, Lee F.; Leibowitz, Benjamin D.; Bentaieb, Aicha; Cancino, Andrea; Dolgalev, Igor; Drummond, Bridgette E.; Dry, Jonathan R.; Ho, Chi-Sing; Khullar, Gaurav; Krantz, Benjamin A.; Mapes, Brandon; McKinnon, Kelly E.; Metti, Jessica; Perera, Jason F.; Rand, Tim A.; Sanchez-Freire, Veronica; Shaxted, Jenna M.; Stein, Michelle M.; Streit, Michael A.; Tan, Yi-Hung Carol; Zhang, Yilin; Zhao, Ende; Venkataraman, Jagadish; Stumpe, Martin C.; Borgia, Jeffrey A.; Masood, Ashiq; Catenacci, Daniel V. T.; Mathews, Jeremy V.; Gursel, Demirkan B.; Wei, Jian-Jun; Welling, Theodore H.; Simeone, Diane M.; White, Kevin P.; Khan, Aly A.; Igartua, Catherine; Salahudeen, Ameen A.; Medicine, School of Medicine
    Patient-derived tumor organoids (TOs) are emerging as high-fidelity models to study cancer biology and develop novel precision medicine therapeutics. However, utilizing TOs for systems-biology-based approaches has been limited by a lack of scalable and reproducible methods to develop and profile these models. We describe a robust pan-cancer TO platform with chemically defined media optimized on cultures acquired from over 1,000 patients. Crucially, we demonstrate tumor genetic and transcriptomic concordance utilizing this approach and further optimize defined minimal media for organoid initiation and propagation. Additionally, we demonstrate a neural-network-based high-throughput approach for label-free, light-microscopy-based drug assays capable of predicting patient-specific heterogeneity in drug responses with applicability across solid cancers. The pan-cancer platform, molecular data, and neural-network-based drug assay serve as resources to accelerate the broad implementation of organoid models in precision medicine research and personalized therapeutic profiling programs.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University