ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Huylebroeck, Danny"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system
    (Elsevier, 2012) Weng, Qinjie; Chen, Ying; Wang, Haibo; Xu, Xiaomei; Yang, Bo; He, Qiaojun; Shou, Weinian; Chen, Yan; Higashi, Yujiro; van den Berghe, Veronique; Seuntjens, Eve; Kernie, Steven G.; Bukshpun, Polina; Sherr, Elliott H.; Huylebroeck, Danny; Lu, Q. Richard; Pediatrics, School of Medicine
    Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor-activated Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP- and β-catenin-negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University