ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Huff, Wei X."

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Aging- and Tumor-Mediated Increase in CD8+CD28- T Cells Might Impose a Strong Barrier to Success of Immunotherapy in Glioblastoma
    (American Association of Immunologists, 2021-06-08) Huff, Wei X.; Bam, Marpe; Shireman, Jack M.; Kwon, Jae Hyun; Song, Leo; Newman, Sharlé; Cohen-Gadol, Aaron A.; Shapiro, Scott; Jones, Tamara; Fulton, Kelsey; Liu, Sheng; Tanaka, Hiromi; Liu, Yunlong; Wan, Jun; Dey, Mahua; Neurological Surgery, School of Medicine
    Clinical use of various forms of immunotherapeutic drugs in glioblastoma (GBM), has highlighted severe T-cell dysfunction such as exhaustion in GBM patients. However, reversing T-cell exhaustion using immune checkpoint inhibitors in GBM clinical trials has not shown significant overall survival benefit. Phenotypically, CD8+ T cells with downregulated CD28 co-receptors, low CD27 expression, increased CD57 expression, and telomere shortening, are classified as senescent T cells. These senescent T cells are normally seen as part of aging and also in many forms of solid cancers. Absence of CD28 on T-cells leads to several functional irregularities including reduced TCR diversity, incomplete activation of T cells, and defects in antigen induced proliferation. In the context of GBM, presence and/or function of these CD8+CD28− T-cells is unknown. In this clinical correlative study, we investigated the effect of aging as well as tumor microenvironment on CD8+ T-cell phenotype as an indicator of its function in GBM patients. We systematically analyzed and describe a large population of CD8+CD28− T-cells in both the blood and tumor infiltrating lymphocytes of GBM patients. We found that phenotypically these CD8+CD28− T-cells represent a distinct population compared to exhausted T-cells. Comparative transcriptomic and pathway analysis of CD8+CD28− T cell populations in GBM patients revealed that tumor microenvironment might be influencing several immune related pathways and thus further exaggerating the age associated immune dysfunction in this patient population.
  • Loading...
    Thumbnail Image
    Item
    CCL21 Induces Plasmacytoid Dendritic Cell Migration and Activation in a Mouse Model of Glioblastoma
    (MDPI, 2024-10-12) Zhao, Lei; Shireman, Jack; Probelsky, Samantha; Rigg, Bailey; Wang, Xiaohu; Huff, Wei X.; Kwon, Jae H.; Dey, Mahua; Neurological Surgery, School of Medicine
    Dendritic cells (DCs) are professional antigen-presenting cells that are traditionally divided into two distinct subsets: myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). pDCs are known for their ability to secrete large amounts of cytokine type I interferons (IFN- α). In our previous work, we have demonstrated that pDC infiltration promotes glioblastoma (GBM) tumor immunosuppression through decreased IFN-α secretion via TLR-9 signaling and increased suppressive function of regulatory T cells (Tregs) via increased IL-10 secretion, resulting in poor overall outcomes in mouse models of GBM. Further dissecting the overall mechanism of pDC-mediated GBM immunosuppression, in this study, we identified CCL21 as highly upregulated by multiple GBM cell lines, which recruit pDCs to tumor sites via CCL21-CCR7 signaling. Furthermore, pDCs are activated by CCL21 in the GBM microenvironment through intracellular signaling of β-arrestin and CIITA. Finally, we found that CCL21-treated pDCs directly suppress CD8+ T cell proliferation without affecting regulatory T cells (Tregs) differentiation, which is considered the canonical pathway of immunotolerant regulation. Taken together, our results show that pDCs play a multifaced role in GBM immunosuppression, and CCL21 could be a novel therapeutic target in GBM to overcome pDC-mediated immunosuppression.
  • Loading...
    Thumbnail Image
    Item
    Efficacy of pre-operative stereotactic radiosurgery followed by surgical resection and correlative radiobiological analysis for patients with 1-4 brain metastases: study protocol for a phase II trial
    (Biomed Central, 2018-12-20) Huff, Wei X.; Agrawal, Namita; Shapiro, Scott; Miller, James; Kulwin, Charles; Shah, Mitesh; Savage, Jesse J.; Payner, Troy; Vortmeyer, Alexander; Watson, Gordon; Dey, Mahua; Neurological Surgery, School of Medicine
    BACKGROUND: Stereotactic radiosurgery (SRS) has emerged as a common adjuvant modality used with surgery for resectable brain metastases (BMs). However, the optimal sequence of the multi-modality therapy has not been established. The goal of the study is to evaluate 6-month local control utilizing pre-operative SRS followed by surgical resection for patients with 1-4 brain metastases. METHODS: This prospective, single arm, phase II trial will recruit patients with up to 4 brain metastases and at least one resectable lesion. All lesions will be treated with SRS and symptomatic lesions will be resected within 1-4 days after SRS. Patients will be monitored for 6-month local control, in-brain progression free survival, distant in-brain failure, rate of leptomeningeal spread, radiation necrosis and overall survival. Additionally, we will also perform correlative radiobiological molecular studies to assess the effect of radiation dosing on the tumor tissue and clinical outcomes. We expect that pre-operative SRS to the gross tumor prior to surgical resection will improve local control and decrease leptomeningeal failure. DISCUSSION: Our study is the second prospective trial to investigate the efficacy of pre-operative SRS in the treatment of multiple BMs. In addition, the correlative molecular studies will be the first to investigate early response of BMs at a cellular and genetic level in response to radiation doses and potentially provide molecular prognostic markers for local control and overall survival.
  • Loading...
    Thumbnail Image
    Item
    The Evolving Role of CD8+CD28- Immunosenescent T Cells in Cancer Immunology
    (MDPI, 2019-06-08) Huff, Wei X.; Kwon, Jae Hyun; Henriquez, Mario; Fetcko, Kaleigh; Dey, Mahua; Neurosurgery, IU School of Medicine
    Functional, tumor-specific CD8+ cytotoxic T lymphocytes drive the adaptive immune response to cancer. Thus, induction of their activity is the ultimate aim of all immunotherapies. Success of anti-tumor immunotherapy is precluded by marked immunosuppression in the tumor microenvironment (TME) leading to CD8+ effector T cell dysfunction. Among the many facets of CD8+ T cell dysfunction that have been recognized-tolerance, anergy, exhaustion, and senescence-CD8+ T cell senescence is incompletely understood. Naïve CD8+ T cells require three essential signals for activation, differentiation, and survival through T-cell receptor, costimulatory receptors, and cytokine receptors. Downregulation of costimulatory molecule CD28 is a hallmark of senescent T cells and increased CD8+CD28- senescent populations with heterogeneous roles have been observed in multiple solid and hematogenous tumors. T cell senescence can be induced by several factors including aging, telomere damage, tumor-associated stress, and regulatory T (Treg) cells. Tumor-induced T cell senescence is yet another mechanism that enables tumor cell resistance to immunotherapy. In this paper, we provide a comprehensive overview of CD8+CD28- senescent T cell population, their origin, their function in immunology and pathologic conditions, including TME and their implication for immunotherapy. Further characterization and investigation into this subset of CD8+ T cells could improve the efficacy of future anti-tumor immunotherapy.
  • Loading...
    Thumbnail Image
    Item
    Resection of a Pineal Region Papillary Tumor Using Robotic Exoscope: Improved Visualization and Ergonomics for Deep Seeded Tumor
    (American Association of Neurological Surgeons, 2021-07-01) Huff, Wei X.; Witten, Andrew J.; Shah, Mitesh V.; Neurological Surgery, School of Medicine
    Surgery for pineal region tumors is technically challenging due to their deep location and close proximity to critical deep venous structures, midbrain, and thalamus. A high-definition video exoscope was recently proposed as an alternative to the operating microscope. The authors illustrate a case of the midline supracerebellar infratentorial approach to resect a pineal region tumor using the Modus V exoscope and demonstrate the improved visualization of critical structures in this deep location. Additionally, the marked improvement in surgeon comfort suggests that this system may have significant advantages over traditional microscope-based surgery for tumors of the pineal region. The video can be found here: https://stream.cadmore.media/r10.3171/2021.4.FOCVID2127.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University