- Browse by Author
Browsing by Author "Huang, Zhi"
Now showing 1 - 10 of 19
Results Per Page
Sort Options
Item A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data(Cold Spring Harbor Laboratory, 2021) Alghamdi, Norah; Chang, Wennan; Dang, Pengtao; Lu, Xiaoyu; Wan, Changlin; Gampala, Silpa; Huang, Zhi; Wang, Jiashi; Ma, Qin; Zang, Yong; Fishel, Melissa; Cao, Sha; Zhang, Chi; Medical and Molecular Genetics, School of MedicineThe metabolic heterogeneity and metabolic interplay between cells are known as significant contributors to disease treatment resistance. However, with the lack of a mature high-throughput single-cell metabolomics technology, we are yet to establish systematic understanding of the intra-tissue metabolic heterogeneity and cooperative mechanisms. To mitigate this knowledge gap, we developed a novel computational method, namely, single-cell flux estimation analysis (scFEA), to infer the cell-wise fluxome from single-cell RNA-sequencing (scRNA-seq) data. scFEA is empowered by a systematically reconstructed human metabolic map as a factor graph, a novel probabilistic model to leverage the flux balance constraints on scRNA-seq data, and a novel graph neural network-based optimization solver. The intricate information cascade from transcriptome to metabolome was captured using multilayer neural networks to capitulate the nonlinear dependency between enzymatic gene expressions and reaction rates. We experimentally validated scFEA by generating an scRNA-seq data set with matched metabolomics data on cells of perturbed oxygen and genetic conditions. Application of scFEA on this data set showed the consistency between predicted flux and the observed variation of metabolite abundance in the matched metabolomics data. We also applied scFEA on five publicly available scRNA-seq and spatial transcriptomics data sets and identified context- and cell group-specific metabolic variations. The cell-wise fluxome predicted by scFEA empowers a series of downstream analyses including identification of metabolic modules or cell groups that share common metabolic variations, sensitivity evaluation of enzymes with regards to their impact on the whole metabolic flux, and inference of cell-tissue and cell-cell metabolic communications.Item Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images(Springer Nature, 2023-01-27) Huang, Zhi; Shao, Wei; Han, Zhi; Alkashash, Ahmad Mahmoud; De la Sancha, Carlo; Parwani, Anil V.; Nitta, Hiroaki; Hou, Yanjun; Wang, Tongxin; Salama, Paul; Rizkalla, Maher; Zhang, Jie; Huang, Kun; Li, Zaibo; Electrical and Computer Engineering, School of Engineering and TechnologyAdvances in computational algorithms and tools have made the prediction of cancer patient outcomes using computational pathology feasible. However, predicting clinical outcomes from pre-treatment histopathologic images remains a challenging task, limited by the poor understanding of tumor immune micro-environments. In this study, an automatic, accurate, comprehensive, interpretable, and reproducible whole slide image (WSI) feature extraction pipeline known as, IMage-based Pathological REgistration and Segmentation Statistics (IMPRESS), is described. We used both H&E and multiplex IHC (PD-L1, CD8+, and CD163+) images, investigated whether artificial intelligence (AI)-based algorithms using automatic feature extraction methods can predict neoadjuvant chemotherapy (NAC) outcomes in HER2-positive (HER2+) and triple-negative breast cancer (TNBC) patients. Features are derived from tumor immune micro-environment and clinical data and used to train machine learning models to accurately predict the response to NAC in breast cancer patients (HER2+ AUC = 0.8975; TNBC AUC = 0.7674). The results demonstrate that this method outperforms the results trained from features that were manually generated by pathologists. The developed image features and algorithms were further externally validated by independent cohorts, yielding encouraging results, especially for the HER2+ subtype.Item Brain-wide structural connectivity alterations under the control of Alzheimer risk genes(Inderscience, 2020) Yan, Jingwen; Raja V, Vinesh; Huang, Zhi; Amico, Enrico; Nho, Kwangsik; Fang, Shiaofen; Sporns, Olaf; Wu, Yu-chien; Saykin, Andrew; Goni, Joaquin; Shen, Li; BioHealth Informatics, School of Informatics and ComputingBackground: Alzheimer's disease is the most common form of brain dementia characterized by gradual loss of memory followed by further deterioration of other cognitive function. Large-scale genome-wide association studies have identified and validated more than 20 AD risk genes. However, how these genes are related to the brain-wide breakdown of structural connectivity in AD patients remains unknown. Methods: We used the genotype and DTI data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. After constructing the brain network for each subject, we extracted three types of link measures, including fiber anisotropy, fiber length and density. We then performed a targeted genetic association analysis of brain-wide connectivity measures using general linear regression models. Age at scan and gender were included in the regression model as covariates. For fair comparison of the genetic effect on different measures, fiber anisotropy, fiber length and density were all normalized with mean as 0 and standard deviation as one.We aim to discover the abnormal brain-wide network alterations under the control of 34 AD risk SNPs identified in previous large-scale genome-wide association studies. Results: After enforcing the stringent Bonferroni correction, rs10498633 in SLC24A4 were found to significantly associated with anisotropy, total number and length of fibers, including some connecting brain hemispheres. With a lower level of significance at 5e-6, we observed significant genetic effect of SNPs in APOE, ABCA7, EPHA1 and CASS4 on various brain connectivity measures.Item Combinatorial analyses reveal cellular composition changes have different impacts on transcriptomic changes of cell type specific genes in Alzheimer’s Disease(Springer Nature, 2021-01-11) Johnson, Travis S.; Xiang, Shunian; Dong, Tianhan; Huang, Zhi; Cheng, Michael; Wang, Tianfu; Yang, Kai; Ni, Dong; Huang, Kun; Zhang, Jie; Biostatistics, School of Public HealthAlzheimer’s disease (AD) brains are characterized by progressive neuron loss and gliosis. Previous studies of gene expression using bulk tissue samples often fail to consider changes in cell-type composition when comparing AD versus control, which can lead to differences in expression levels that are not due to transcriptional regulation. We mined five large transcriptomic AD datasets for conserved gene co-expression module, then analyzed differential expression and differential co-expression within the modules between AD samples and controls. We performed cell-type deconvolution analysis to determine whether the observed differential expression was due to changes in cell-type proportions in the samples or to transcriptional regulation. Our findings were validated using four additional datasets. We discovered that the increased expression of microglia modules in the AD samples can be explained by increased microglia proportions in the AD samples. In contrast, decreased expression and perturbed co-expression within neuron modules in the AD samples was likely due in part to altered regulation of neuronal pathways. Several transcription factors that are differentially expressed in AD might account for such altered gene regulation. Similarly, changes in gene expression and co-expression within astrocyte modules could be attributed to combined effects of astrogliosis and astrocyte gene activation. Gene expression in the astrocyte modules was also strongly correlated with clinicopathological biomarkers. Through this work, we demonstrated that combinatorial analysis can delineate the origins of transcriptomic changes in bulk tissue data and shed light on key genes and pathways involved in AD.Item Condition-specific gene co-expression network mining identifies key pathways and regulators in the brain tissue of Alzheimer's disease patients(Biomed Central, 2018-12-31) Xiang, Shunian; Huang, Zhi; Wang, Tianfu; Han, Zhi; Yu, Christina Y.; Ni, Dong; Huang, Kun; Zhang, Jie; Medicine, School of MedicineBACKGROUND: Gene co-expression network (GCN) mining is a systematic approach to efficiently identify novel disease pathways, predict novel gene functions and search for potential disease biomarkers. However, few studies have systematically identified GCNs in multiple brain transcriptomic data of Alzheimer's disease (AD) patients and looked for their specific functions. METHODS: In this study, we first mined GCN modules from AD and normal brain samples in multiple datasets respectively; then identified gene modules that are specific to AD or normal samples; lastly, condition-specific modules with similar functional enrichments were merged and enriched differentially expressed upstream transcription factors were further examined for the AD/normal-specific modules. RESULTS: We obtained 30 AD-specific modules which showed gain of correlation in AD samples and 31 normal-specific modules with loss of correlation in AD samples compared to normal ones, using the network mining tool lmQCM. Functional and pathway enrichment analysis not only confirmed known gene functional categories related to AD, but also identified novel regulatory factors and pathways. Remarkably, pathway analysis suggested that a variety of viral, bacteria, and parasitic infection pathways are activated in AD samples. Furthermore, upstream transcription factor analysis identified differentially expressed upstream regulators such as ZFHX3 for several modules, which can be potential driver genes for AD etiology and pathology. CONCLUSIONS: Through our state-of-the-art network-based approach, AD/normal-specific GCN modules were identified using multiple transcriptomic datasets from multiple regions of the brain. Bacterial and viral infectious disease related pathways are the most frequently enriched in modules across datasets. Transcription factor ZFHX3 was identified as a potential driver regulator targeting the infectious diseases pathways in AD-specific modules. Our results provided new direction to the mechanism of AD as well as new candidates for drug targets.Item Correlation Analysis of Histopathology and Proteogenomics Data for Breast Cancer(American Society for Biochemistry and Molecular Biology, 2019-08-09) Zhan, Xiaohui; Cheng, Jun; Huang, Zhi; Han, Zhi; Helm, Bryan; Liu, Xiaowen; Zhang, Jie; Wang, Tian-Fu; Ni, Dong; Huang, Kun; Medicine, School of MedicineTumors are heterogeneous tissues with different types of cells such as cancer cells, fibroblasts, and lymphocytes. Although the morphological features of tumors are critical for cancer diagnosis and prognosis, the underlying molecular events and genes for tumor morphology are far from being clear. With the advancement in computational pathology and accumulation of large amount of cancer samples with matched molecular and histopathology data, researchers can carry out integrative analysis to investigate this issue. In this study, we systematically examine the relationships between morphological features and various molecular data in breast cancers. Specifically, we identified 73 breast cancer patients from the TCGA and CPTAC projects matched whole slide images, RNA-seq, and proteomic data. By calculating 100 different morphological features and correlating them with the transcriptomic and proteomic data, we inferred four major biological processes associated with various interpretable morphological features. These processes include metabolism, cell cycle, immune response, and extracellular matrix development, which are all hallmarks of cancers and the associated morphological features are related to area, density, and shapes of epithelial cells, fibroblasts, and lymphocytes. In addition, protein specific biological processes were inferred solely from proteomic data, suggesting the importance of proteomic data in obtaining a holistic understanding of the molecular basis for tumor tissue morphology. Furthermore, survival analysis yielded specific morphological features related to patient prognosis, which have a strong association with important molecular events based on our analysis. Overall, our study demonstrated the power for integrating multiple types of biological data for cancer samples in generating new hypothesis as well as identifying potential biomarkers predicting patient outcome. Future work includes causal analysis to identify key regulators for cancer tissue development and validating the findings using more independent data sets.Item Deep learning-based cancer survival prognosis from RNA-seq data: approaches and evaluations(BMC, 2020) Huang, Zhi; Johnson, Travis S.; Han, Zhi; Helm, Bryan; Cao, Sha; Zhang, Chi; Salama, Paul; Rizkalla, Maher; Yu, Christina Y.; Cheng, Jun; Xiang, Shunian; Zhan, Xiaohui; Zhang, Jie; Huang, Kun; Medicine, School of MedicineBackground: Recent advances in kernel-based Deep Learning models have introduced a new era in medical research. Originally designed for pattern recognition and image processing, Deep Learning models are now applied to survival prognosis of cancer patients. Specifically, Deep Learning versions of the Cox proportional hazards models are trained with transcriptomic data to predict survival outcomes in cancer patients. Methods: In this study, a broad analysis was performed on TCGA cancers using a variety of Deep Learning-based models, including Cox-nnet, DeepSurv, and a method proposed by our group named AECOX (AutoEncoder with Cox regression network). Concordance index and p-value of the log-rank test are used to evaluate the model performances. Results: All models show competitive results across 12 cancer types. The last hidden layers of the Deep Learning approaches are lower dimensional representations of the input data that can be used for feature reduction and visualization. Furthermore, the prognosis performances reveal a negative correlation between model accuracy, overall survival time statistics, and tumor mutation burden (TMB), suggesting an association among overall survival time, TMB, and prognosis prediction accuracy. Conclusions: Deep Learning based algorithms demonstrate superior performances than traditional machine learning based models. The cancer prognosis results measured in concordance index are indistinguishable across models while are highly variable across cancers. These findings shedding some light into the relationships between patient characteristics and survival learnability on a pan-cancer level.Item Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease(BMC, 2022-02-01) Johnson, Travis S.; Yu, Christina Y.; Huang, Zhi; Xu, Siwen; Wang, Tongxin; Dong, Chuanpeng; Shao, Wei; Zaid, Mohammad Abu; Huang, Xiaoqing; Wang, Yijie; Bartlett, Christopher; Zhang, Yan; Walker, Brian A.; Liu, Yunlong; Huang, Kun; Zhang, Jie; Medicine, School of MedicineWe propose DEGAS (Diagnostic Evidence GAuge of Single cells), a novel deep transfer learning framework, to transfer disease information from patients to cells. We call such transferrable information "impressions," which allow individual cells to be associated with disease attributes like diagnosis, prognosis, and response to therapy. Using simulated data and ten diverse single-cell and patient bulk tissue transcriptomic datasets from glioblastoma multiforme (GBM), Alzheimer's disease (AD), and multiple myeloma (MM), we demonstrate the feasibility, flexibility, and broad applications of the DEGAS framework. DEGAS analysis on myeloma single-cell transcriptomics identified PHF19high myeloma cells associated with progression.Item Gene Co-expression Network and Copy Number Variation Analyses Identify Transcription Factors Associated With Multiple Myeloma Progression(Frontiers, 2019-05-17) Yu, Christina Y.; Xiang, Shunian; Huang, Zhi; Johnson, Travis S.; Zhan, Xiaohui; Han, Zhi; Abu Zaid, Mohammad; Huang, Kun; Medicine, School of MedicineMultiple myeloma (MM) has two clinical precursor stages of disease: monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). However, the mechanism of progression is not well understood. Because gene co-expression network analysis is a well-known method for discovering new gene functions and regulatory relationships, we utilized this framework to conduct differential co-expression analysis to identify interesting transcription factors (TFs) in two publicly available datasets. We then used copy number variation (CNV) data from a third public dataset to validate these TFs. First, we identified co-expressed gene modules in two publicly available datasets each containing three conditions: normal, MGUS, and SMM. These modules were assessed for condition-specific gene expression, and then enrichment analysis was conducted on condition-specific modules to identify their biological function and upstream TFs. TFs were assessed for differential gene expression between normal and MM precursors, then validated with CNV analysis to identify candidate genes. Functional enrichment analysis reaffirmed known functional categories in MM pathology, the main one relating to immune function. Enrichment analysis revealed a handful of differentially expressed TFs between normal and either MGUS or SMM in gene expression and/or CNV. Overall, we identified four genes of interest (MAX, TCF4, ZNF148, and ZNF281) that aid in our understanding of MM initiation and progression.Item Identification of potential key genes associated with severe pneumonia using mRNA-seq(Spandidos, 2018-08) Feng, Cong; Huang, He; Huang, Sai; Zhai, Yong-Zhi; Dong, Jing; Chen, Li; Huang, Zhi; Zhou, Xuan; Li, Bei; Wang, Li-Li; Chen, Wei; Lv, Fa-Qin; Li, Tan-Shi; Electrical and Computer Engineering, School of Engineering and TechnologyThis study aimed to identify the potential key genes associated with severe pneumonia using mRNA-seq. Nine peripheral blood samples from patients with severe pneumonia alone (SP group, n=3) and severe pneumonia accompanied with chronic obstructive pulmonary disease (COPD; CSP group, n=3), as well as volunteers without pneumonia (control group, n=3) underwent mRNA-seq. Based on the sequencing data, differentially expressed genes (DEGs) were identified by Limma package. Following the pathway enrichment analysis of DEGs, the genes that were differentially expressed in the SP and CSP groups were selected for pathway enrichment analysis and coexpression analysis. In addition, potential genes related to pneumonia were identified based on the information in the Comparative Toxicogenomics Database. In total, 645 and 528 DEGs were identified in the SP and CSP groups, respectively, compared with the normal controls. Among these DEGs, 88 upregulated genes and 80 downregulated genes were common between the two groups. The functions of the common DEGs were similar to those of the DEGs in the SP group. In the coexpression network, the commonly downregulated genes (including ND1, ND3, ND4L, and ND6) and the commonly upregulated genes (including TSPY6P and CDY10P) exhibited a higher degree. In addition, 131 DEGs (including ND1, ND3, ND6, MIR449A and TAS2R43) were predicted to be potential pneumonia-related genes. In conclusion, the present study demonstrated that the common DEGs may be associated with the progression of severe pneumonia.