- Browse by Author
Browsing by Author "Huang, Qi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Biogenesis and molecular characteristics of serum hepatitis B virus RNA(Public Library of Science, 2020-10-20) Shen, Sheng; Xie, Zhanglian; Cai, Dawei; Yu, Xiaoyang; Zhang, Hu; Kim, Elena S.; Zhou, Bin; Hou, Jinlin; Zhang, Xiaoyong; Huang, Qi; Sun, Jian; Guo, Haitao; Medicine, School of MedicineHBV is an enveloped DNA virus that replicates its DNA genome via reverse transcription of a pregenomic (pg) RNA intermediate in hepatocytes. Interestingly, HBV RNA can be detected in virus-like particles in chronic hepatitis B (CHB) patient serum and has been utilized as a biomarker for intrahepatic cccDNA activity in treated patients. However, the biogenesis and molecular characteristics of serum HBV RNA remain to be fully defined. In this study, we found that the encapsidated serum HBV RNA predominately consists of pgRNA, which are detergent- and ribonuclease-resistant. Through blocking HBV DNA replication without affecting pgRNA encapsidation by using the priming-defective HBV mutant Y63D or 3TC treatment, we demonstrated that the cell culture supernatant contains a large amount of pgRNA-containing nonenveloped capsids and a minor population of pgRNA-containing virions. The formation of pgRNA-virion requires both capsid assembly and viral envelope proteins, which can be inhibited by capsid assembly modulators and an envelope–knockout mutant, respectively. Furthermore, the pgRNA-virion utilizes the multivesicular body pathway for egress, in a similar way as DNA-virion morphogenesis. Northern blotting, RT-PCR, and 3’ RACE assays revealed that serum/supernatant HBV pgRNA are mainly spliced and devoid of the 3’-terminal sequences. Furthermore, pgRNA-virion collected from cells treated with a reversible HBV priming inhibitor L-FMAU was unable to establish infection in HepG2-NTCP cells. In summary, serum HBV RNA is secreted in noninfectious virion-like particle as spliced and poly(A)-free pgRNA. Our study will shed light on the molecular biology of serum HBV RNA in HBV life cycle, and aid the development of serum HBV RNA as a novel biomarker for CHB diagnosis and treatment prognosis.Item Rapid Turnover of Hepatitis B Virus Covalently Closed Circular DNA Indicated by Monitoring Emergence and Reversion of Signature-Mutation in Treated Chronic Hepatitis B Patients(Wiley, 2021) Huang, Qi; Zhou, Bin; Cai, Dawei; Zong, Yuhua; Wu, Yaobo; Liu, Shi; Mercier, Alexandre; Guo, Haitao; Hou, Jinlin; Colonno, Richard; Sun, Jian; Microbiology and Immunology, School of MedicineBackground and aims: Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a pivotal role in the establishment and persistence of HBV infection. Understanding the turnover time of preexisting cccDNA pools would be helpful in designing strategies to clear HBV by fully blocking the de novo generation of cccDNA. Approach and results: In this study, we retrospectively monitored the emergence and reversion of the rtM204I/V mutant, a signature lamivudine resistance (LAMR ) mutation serving as a biomarker of cccDNA turnover in liver biopsies and longitudinal serum samples from two clinical trials. Methodologies were optimized to differentially isolate and sequence HBV virion DNA, cccDNA, and HBV RNA from clinical samples. A strong correlation was observed between LAMR composition of cccDNA with that of serum and intrahepatic HBV RNA in paired liver and serum samples (r = 0.96 and 0.90, respectively), suggesting that serum HBV RNA can serve as a surrogate marker of cccDNA genetic composition when liver biopsies are unavailable. LAMR mutations emerged and increased from undetectable to 40%-90% within 16-28 weeks in serum HBV RNA from telbivudine-treated patients experiencing virological breakthrough. Similarly, in lamivudine-resistant patients who switched to interferon therapy, serum HBV-RNA population bearing 100% LAMR mutations fully reversed back to wild type within 24-48 weeks. Conclusions: The genetic composition dynamics of serum HBV RNA and biopsy cccDNA in treated HBV patients indicates that cccDNA turnover occurs relatively rapidly (several months), offering a possibility of HBV cure with finite therapy through completely blocking cccDNA replenishment.