- Browse by Author
Browsing by Author "Huang, Menghao"
Now showing 1 - 10 of 17
Results Per Page
Sort Options
Item Advancing the Metabolic Dysfunction-Associated Steatotic Liver Disease Proteome: A Post-Translational Outlook(MDPI, 2025-03-12) Chowdhury, Kushan; Das, Debajyoti; Huang, Menghao; Biochemistry and Molecular Biology, School of MedicineMetabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver disorder with limited treatment options. This review explores the role of post-translational modifications (PTMs) in MASLD pathogenesis, highlighting their potential as therapeutic targets. We discuss the impact of PTMs, including their phosphorylation, ubiquitylation, acetylation, and glycosylation, on key proteins involved in MASLD, drawing on studies that use both human subjects and animal models. These modifications influence various cellular processes, such as lipid metabolism, inflammation, and fibrosis, contributing to disease progression. Understanding the intricate PTM network in MASLD offers the potential for developing novel therapeutic strategies that target specific PTMs to modulate protein function and alleviate disease pathology. Further research is needed to fully elucidate the complexity of PTMs in MASLD and translate these findings into effective clinical applications.Item ATG14 plays a critical role in hepatic lipid droplet homeostasis(Elsevier, 2023) Huang, Menghao; Zhang, Yang; Park, Jimin; Chowdhury, Kushan; Xu, Jiazhi; Lu, Alex; Wang, Lu; Zhang, Wenjun; Ekser, Burcin; Yu, Liqing; Dong, X. Charlie; Biochemistry and Molecular Biology, School of MedicineBackground & aims: Autophagy-related 14 (ATG14) is a key regulator of autophagy. ATG14 is also localized to lipid droplet; however, the function of ATG14 on lipid droplet remains unclear. In this study, we aimed to elucidate the role of ATG14 in lipid droplet homeostasis. Methods: ATG14 loss-of-function and gain-of-function in lipid droplet metabolism were analyzed by fluorescence imaging in ATG14 knockdown or overexpression hepatocytes. Specific domains involved in the ATG14 targeting to lipid droplets were analyzed by deletion or site-specific mutagenesis. ATG14-interacting proteins were analyzed by co-immunoprecipitation. The effect of ATG14 on lipolysis was analyzed in human hepatocytes and mouse livers that were deficient in ATG14, comparative gene identification-58 (CGI-58), or both. Results: Our data show that ATG14 is enriched on lipid droplets in hepatocytes. Mutagenesis analysis reveals that the Barkor/ATG14 autophagosome targeting sequence (BATS) domain of ATG14 is responsible for the ATG14 localization to lipid droplets. Co-immunoprecipitation analysis illustrates that ATG14 interacts with adipose triglyceride lipase (ATGL) and CGI-58. Moreover, ATG14 also enhances the interaction between ATGL and CGI-58. In vitro lipolysis analysis demonstrates that ATG14 deficiency remarkably decreases triglyceride hydrolysis. Conclusions: Our data suggest that ATG14 can directly enhance lipid droplet breakdown through interactions with ATGL and CGI-58.Item Causal relationships between NAFLD, T2D and obesity have implications for disease subphenotyping(Elsevier, 2020-08) Liu, Zhipeng; Zhang, Yang; Graham, Sarah; Wang, Xiaokun; Cai, Defeng; Huang, Menghao; Pique-Regi, Roger; Dong, Xiaocheng Charlie; Chen, Y. Eugene; Willer, Cristen; Liu, Wanqing; Biochemistry and Molecular Biology, School of MedicineBackground & aims: Non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D) and obesity are epidemiologically correlated with each other but the causal inter-relationships between them remain incompletely understood. We aimed to explore the causal relationships between the 3 diseases. Methods: Using both UK Biobank and publicly available genome-wide association study data, we performed a 2-sample bidirectional Mendelian randomization analysis to test the causal inter-relationships between NAFLD, T2D, and obesity. Transgenic mice expressing the human PNPLA3-I148M isoforms (TghPNPLA3-I148M) were used as an example to validate causal effects and explore underlying mechanisms. Results: Genetically driven NAFLD significantly increased the risk of T2D and central obesity but not insulin resistance or generalized obesity, while genetically driven T2D, body mass index and WHRadjBMI causally increased NAFLD risk. The animal study focusing on PNPLA3 corroborated these causal effects: compared to the TghPNPLA3-I148I controls, the TghPNPLA3-I148M mice developed glucose intolerance and increased visceral fat, but maintained normal insulin sensitivity, reduced body weight, and decreased circulating total cholesterol. Mechanistically, the TghPNPLA3-I148M mice demonstrated decreased pancreatic insulin but increased glucagon secretion, which was associated with increased pancreatic inflammation. In addition, transcription of hepatic cholesterol biosynthesis pathway genes was significantly suppressed, while transcription of thermogenic pathway genes was activated in subcutaneous and brown adipose tissues but not in visceral fat in TghPNPLA3-I148M mice. Conclusions: Our study suggests that lifelong, genetically driven NAFLD causally promotes T2D with a late-onset type 1-like diabetic subphenotype and central obesity; while genetically driven T2D, obesity, and central obesity all causally increase the risk of NAFLD. This causal relationship revealed new insights into how nature and nurture drive these diseases, providing novel hypotheses for disease subphenotyping. Lay summary: Non-alcoholic fatty liver disease, type 2 diabetes and obesity are epidemiologically correlated with each other, but their causal relationships were incompletely understood. Herein, we identified causal relationships between these conditions, which suggest that each of these closely related diseases should be further stratified into subtypes. This is important for accurate diagnosis, prevention and treatment of these diseases.Item Design, synthesis and antimycobacterial activity of novel nitrobenzamide derivatives(Elsevier, 2018) Wang, Hongjian; Lv, Kai; Li, Xiaoning; Wang, Bo; Wang, Apeng; Tao, Zeyu; Geng, Yunhe; Wang, Bin; Huang, Menghao; Liu, Mingliang; Guo, Huiyuan; Lu, Yu; Medicine, School of MedicineWe report herein the design and synthesis of a series of novel nitrobenzamide derivatives. Results reveal that many of them display considerable in vitro antitubercular activity. Four N-benzyl or N-(pyridine-2-yl)methyl 3,5-dinitrobenzamides A6, A11, C1 and C4 have not only the same excellent MIC values of <0.016 μg/mL against both drug-sensitive MTB strain H37Rv and two drug-resistant clinical isolates as PBTZ169 and the lead 1, but also acceptable safety indices (SI > 1500), opening a new direction for further development.Item Design, synthesis and antitubercular evaluation of benzothiazinones containing a piperidine moiety(Elsevier, 2018-05) Lv, Kai; Tao, Zeyu; Liu, Qian; Yang, Lu; Wang, Bin; Wu, Shuo; Wang, Apeng; Huang, Menghao; Liu, Mingliang; Lu, Yu; Medicine, School of MedicineWe herein report the design and synthesis of benzothiazinones containing a piperidine moiety as new antitubercular agents based on the structure feature of IMB-ZR-1 discovered in our lab. Some of them were found to have good in vitro activity (MIC < 1 μg/mL) against drug-susceptible Mycobacterium tuberculosis H37RV strain. After two set of modifications, compound 2i were found to display comparable in vitro anti-TB activity (MIC < 0.016 μg/mL) to PBTZ169 against drug-sensitive and resistant mycobacterium tuberculosis strains. Compound 2i also showed acceptable PK profiles. Studies to determine PK profiles in lung and in vivo efficacy of 2i are currently under way.Item Design, synthesis and in vitro anti-Zika virus evaluation of novel Sinefungin derivatives(Elsevier, 2018-09) Tao, Zeyu; Cao, Ruiyuan; Yan, Yunzheng; Huang, Guocheng; Lv, Kai; Li, Wei; Geng, Yunhe; Zhao, Lei; Wang, Apeng; He, Qinhao; Yang, Jingjing; Fan, Shiyong; Huang, Menghao; Guo, Huiyuan; Zhong, Wu; Lu, Mingliang; Medicine, School of MedicineWe report herein the design and synthesis of a series of novel Sinefungin (SIN) derivatives, based on the structures of SIN and its analogue EPZ004777. Our results reveal that target compounds 1ad-af, 1ba-bb and 1bf-bh show better activity (IC50 = 4.56–20.16 μM) than EPZ004777 (IC50 = 35.19 μM). Surprisingly, SIN was founded to be not as active (IC50 > 50 μM) as we and other research groups predicted. Interestingly, the intermediates 9a-b and 11b display potent anti-ZIKV potency (IC50 = 6.33–29.98 μM), and compound 9a also exhibits acceptable cytotoxicity (CC50 > 200 μM), suggesting their promising potential to be leads for further development.Item Editorial: Nonalcoholic fatty liver disease therapy: Exploring molecular mechanisms of well-defined composition from natural plants(Frontiers Media, 2022-09-20) Zhang, Wenji; Huang, Menghao; Liu, Runping; Biochemistry and Molecular Biology, School of MedicineItem The epigenetic regulator SIRT6 protects the liver from alcohol-induced tissue injury by reducing oxidative stress in mice(Elsevier, 2019-11) Kim, Hyeong Geug; Huang, Menghao; Xin, Yue; Zhang, Yang; Zhang, Xinge; Wang, Gaihong; Liu, Sheng; Wan, Jun; Ahmadi, Ali Reza; Sun, Zhaoli; Liangpunsakul, Suthat; Xiong, Xiwen; Dong, Xiaocheng Charlie; Biochemistry and Molecular Biology, School of MedicineBACKGROUND & AIMS: As a nicotinamide adenine dinucleotide-dependent deacetylase and a key epigenetic regulator, sirtuin 6 (SIRT6) has been implicated in the regulation of metabolism, DNA repair, and inflammation. However, the role of SIRT6 in alcohol-related liver disease (ALD) remains unclear. The aim of this study was to investigate the function and mechanism of SIRT6 in ALD pathogenesis. METHODS: We developed and characterized Sirt6 knockout (KO) and transgenic mouse models that were treated with either control or ethanol diet. Hepatic steatosis, inflammation, and oxidative stress were analyzed using biochemical and histological methods. Gene regulation was analyzed by luciferase reporter and chromatin immunoprecipitation assays. RESULTS: The Sirt6 KO mice developed severe liver injury characterized by a remarkable increase of oxidative stress and inflammation, whereas the Sirt6 transgenic mice were protected from ALD via normalization of hepatic lipids, inflammatory response, and oxidative stress. Our molecular analysis has identified a number of novel Sirt6-regulated genes that are involved in antioxidative stress, including metallothionein 1 and 2 (Mt1 and Mt2). Mt1/2 genes were downregulated in the livers of Sirt6 KO mice and patients with alcoholic hepatitis. Overexpression of Mt1 in the liver of Sirt6 KO mice improved ALD by reducing hepatic oxidative stress and inflammation. We also identified a critical link between SIRT6 and metal regulatory transcription factor 1 (Mtf1) via a physical interaction and functional coactivation. Mt1/2 promoter reporter assays showed a strong synergistic effect of SIRT6 on the transcriptional activity of Mtf1. CONCLUSIONS: Our data suggest that SIRT6 plays a critical protective role against ALD and it may serve as a potential therapeutic target for ALD. LAY SUMMARY: The liver, the primary organ for ethanol metabolism, can be damaged by the byproducts of ethanol metabolism, including reactive oxygen species. In this study, we have identified a key epigenetic regulator SIRT6 that plays a critical role in protecting the liver from oxidative stress-induced liver injury. Thus, our data suggest that SIRT6 may be a potential therapeutic target for alcohol-related liver disease.Item A high-fat diet catalyzes progression to hyperglycemia in mice with selective impairment of insulin action in Glut4-expressing tissues(Elsevier, 2022-01) Reilly, Austin M.; Yan, Shijun; Huang, Menghao; Abhyankar, Surabhi D.; Conley, Jason M.; Bone, Robert N.; Stull, Natalie D.; Horan, Daniel J.; Roh, Hyun C.; Robling, Alexander G.; Ericsson, Aaron C.; Dong, Xiaocheng C.; Evans-Molina, Carmella; Ren, Hongxia; Pediatrics, School of MedicineInsulin resistance impairs postprandial glucose uptake through glucose transporter type 4 (GLUT4) and is the primary defect preceding type 2 diabetes. We previously generated an insulin-resistant mouse model with human GLUT4 promoter-driven insulin receptor knockout (GIRKO) in the muscle, adipose, and neuronal subpopulations. However, the rate of diabetes in GIRKO mice remained low prior to 6 months of age on normal chow diet (NCD), suggesting that additional factors/mechanisms are responsible for adverse metabolic effects driving the ultimate progression of overt diabetes. In this study, we characterized the metabolic phenotypes of the adult GIRKO mice acutely switched to high-fat diet (HFD) feeding in order to identify additional metabolic challenges required for disease progression. Distinct from other diet-induced obesity (DIO) and genetic models (e.g., db/db mice), GIRKO mice remained leaner on HFD feeding, but developed other cardinal features of insulin resistance syndrome. GIRKO mice rapidly developed hyperglycemia despite compensatory increases in β-cell mass and hyperinsulinemia. Furthermore, GIRKO mice also had impaired oral glucose tolerance and a limited glucose-lowering benefit from exendin-4, suggesting that the blunted incretin effect contributed to hyperglycemia. Secondly, GIRKO mice manifested severe dyslipidemia while on HFD due to elevated hepatic lipid secretion, serum triglyceride concentration, and lipid droplet accumulation in hepatocytes. Thirdly, GIRKO mice on HFD had increased inflammatory cues in the gut, which were associated with the HFD-induced microbiome alterations and increased serum lipopolysaccharide (LPS). In conclusion, our studies identified important gene/diet interactions contributing to diabetes progression, which might be leveraged to develop more efficacious therapies.Item Identification of benzothiazones containing a hexahydropyrrolo[3,4- c]pyrrol moiety as antitubercular agents against MDR-MTB(Royal Society of Chemistry, 2020-04-07) Ma, Xican; Han, Bing; Wang, Aoyu; Yang, Lu; Huang, Menghao; Chowdhury, Kushan; Gu, Jian; Zhang, Kai; Lv, Kai; Biochemistry and Molecular Biology, School of MedicineIMB1603, a spiro-benzothiazone compound discovered by our lab, displayed potent anti-MTB activity in vitro and in vivo. In this study, we reported a series of new BTZs containing the hexahydropyrrolo[3,4-c]pyrrol moiety based on the structure of IMB1603. Among them, BTZs 11 and 24 displayed potent anti-MTB (MIC < 0.035 μM) and MDR-MTB (MIC, 0.053-0.102 μM) activity, good solubility (1.82-1.85 μg mL-1), and low cytotoxicity (CC50 > 200 μM), suggesting BTZs 11 and 24 may serve as promising candidates for further study. The molecular docking study of 11 toward DprE was also investigated, and revealed that 11 mimicked the binding pattern of PBTZ169 in the active site of DprE1.